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Abstract Digital Image Correlation (DIC) is an important
and widely used non-contact technique for measuring material
deformation. Considerable progress has been made in recent
decades in both developing new experimental DIC techniques
and in enhancing the performance of the relevant computa-
tional algorithms. Despite this progress, there is a distinct lack
of a freely available, high-quality, flexible DIC software. This
paper documents a new DIC software package Ncorr that is
meant to fill that crucial gap. Ncorr is an open-source subset-
based 2D DIC package that amalgamates modern DIC algo-
rithms proposed in the literature with additional enhance-
ments. Several applications of Ncorr that both validate it and
showcase its capabilities are discussed.
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Introduction

Digital Image Correlation (DIC) is a robust non-contact tech-
nique for measuring material deformation [1–3]. DIC uses
image registration algorithms to track the relative displace-
ments of material points between a reference (typically, the

undeformed) image and a current (typically, the deformed)
image [4, 5]. The scale agnostic nature of DIC allows for the
study of deformation at different length scales from meters to
the nanoscale [6–11], as long as the material can be properly
patterned and imaged. The behavior of diverse systems has
been studied such as biological materials [12–15], metal al-
loys [16–18], shape memory alloys [19, 20], porous metals
[21–23], polymers [24] and polymer foams [25]. Each mate-
rial system presents challenges that may require modification
of standard DIC algorithms, such as highly localized deforma-
tion, large strains, etc.

In recent years, several improvements to the core compu-
tation algorithms have been proposed and implemented
[26–31]. However, there appears to be a distinct lack of a
modern, adaptable, and accessible DIC code (although older
packages exist on theMatlab File Exchange [32, 33]). In order
to accelerate innovation and to introduce DIC to a wide com-
munity of researchers, we have developed an open-source,
freely available 2D subset-based digital image correlation
software package (Ncorr) that amalgamates modern algo-
rithms proposed in the literature [28, 31, 34–37], as well as
many additional improvements and changes. Ncorr is meant
to be a well-documented flexible code that users can freely
adapt to suit their needs. The package is implemented in
MATLAB (http://www.mathworks.com/products/matlab/), a
widely used general purpose numerical computing
environment for engineers. For greater efficiency, compute
intensive algorithms are written in C++ and incorporated
into MATLAB through the MEX interface (http://www.
mathworks.com/help/matlab/share-mex-files.html). A high
quality Graphical User Interface (GUI) can assist in the
analysis.

The purpose of this paper is to document the algorithms
implemented in Ncorr, as well as the validation and verifica-
tion tests. We also demonstrate application of Ncorr to several
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common problems in experimental mechanics that showcase
some of the code capabilities.

The significance of DIC for experimental mechanics com-
munity is exemplified by the recent Society of Experimental
Mechanics (SEM) DIC challenge (http://www.sem.org/dic-
challenge/). The aim of the challenge is to cross validate
existing DIC codes and to document their performance on a
well documented set of standard tests. The analysis of several
examples from the DIC challenge using Ncorr is discussed in
this paper.

The paper is organized as follows: 1) description of funda-
mental DIC algorithms used in Ncorr, 2) extensions and im-
provements of the code specific to Ncorr, 3) validation and 4)
representative applications.

Core DIC Algorithm Description

Subset Deformation

In subset-based DIC algorithms, the reference image is
partitioned into smaller regions referred to as subsets or
subwindows. The deformation is assumed to be homogeneous
inside each subset, and the deformed subsets are then tracked
in the current image. In Ncorr, subsets are initially a contigu-
ous circular group of points that are on integer pixel locations
in the reference configuration. The transformation of the co-
ordinates of these points from the reference to the current
configuration is constrained to a linear, first order transforma-
tion

excuri ¼ xre f i þ urc þ ∂u
∂xrc

xre f i−xre f c
� �þ ∂u

∂yrc
yre f j

−yre f c
� �

eycur j ¼ yre f j
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∂xrc
xre f i−xre f c
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∂yrc
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−yre f c
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∂v
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� �T

ð2Þ

Here xre f i and yre f j
are the x and y coordinates of an

initial reference subset point, xre f c and yre f c are the coor-

dinates of the center of the initial reference subset, andexcuri and eycur j are the coordinates of a current subset point.
The deformation is parameterized by displacements u and
v and their derivatives, all of which are constant for a
given subset. Equation (2) defines a generalized deforma-
tion vector p. The indices (i,j) are used for the relative
location of the points with respect to the center of the
subset, as well as to establish correspondences between
subset points in the current and reference configuration
and S is a set which contains all of the subset points.
The subscript “rc” used in equation (1) is meant to signify
that the transformation is from the reference to current

coordinate system. Equation (1) can also be written in
matrix form

ξre f c þ w Δξre f ; prc
� � ¼ xTre f c

yTre f c
1
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9=;þ

1þ du
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ΔyTre f
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9=;

ð3Þ
where ξ is an augmented vector containing the x and y
coordinates of subset points, Δx and Δy are the distances
between subset points and the center of the subset, and w
is a so-called warp function.

For purposes of computational efficiency (more specifical-
ly, to accommodate the inverse compositional method de-
scribed later), we also allow the reference subset to deform
within the reference configuration as follows:

exre f i ¼ xre f i þ urr þ ∂u
∂xrr

xre f i−xre f c
� �þ ∂u

∂yrr
yre f j

−yre f c
� �

eyre f j ¼ yre f j
þ vrr þ ∂v

∂xrr
xre f i−xre f c
� �þ ∂v

∂yrr
yre f i−yre f c
� �

i; jð Þ∈S

ð4Þ

whereexre f i andeyre f j
are the x and y coordinates of a deformed

reference subset point. The “rr” subscript in equation (4) is
meant to signify that the transformation is between two differ-
ent coordinate systems in the reference image.

Correlation Criteria

In order to find the deformation of a subset, DIC algorithms
find the extremum of a correlation (cost) function. Figure 1
shows a schematic of this process. In Ncorr, two different
correlation criteria are used to find the initial guess and its
subsequent refinement. The initial guess is found by comput-
ing at integer locations the normalized cross correlation
(NCC) (see Fig. 2)

Ccc ¼
X

i; jð Þ∈S f exre f i ;eyre f j

� �
− f m

� �
g excuri ;eycur j� �

−gm
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i; jð Þ∈S f exre f i ;eyre f j

� �
− f m

h i2X
i; jð Þ∈S g excuri ;eycur j� �

−gm
h i2r ð5Þ

Here f and g are respectively the reference and current
image grayscale intensity functions at a specified location (x,
y). Functions fm and gm correspond to the mean grayscale
values of the reference and current subset

f m ¼
X

i; jð Þ∈S f exre f i ;eyre f j

� �
n Sð Þ ð6Þ

gm ¼
X

i; jð Þ∈Sg excuri ;eycur j� �
n Sð Þ ð7Þ

where n(S) is the number of data points in subset S. The
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initial guess thus yields u and v with integer (pixel) accu-
racy. The next step uses a nonlinear optimizer to refine
these results with sub-pixel resolution by finding the min-
imum of

CLS ¼
X
i; jð Þ∈S

f exre f i ;eyre f j

� �
− f mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i; jð Þ∈S g exre f i ;eyre f j

� �
− f m

h i2r −
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−gmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i; jð Þ∈S g excuri ;eycur j� �

−gm
h i2r

2664
3775
2

ð8Þ

Correlation criteria CCC and CLS are directly related [38].

Non-Linear Optimization Scheme

Ncorr uses the Inverse Compositional Gauss-Newton (IC-
GN) method as the nonlinear optimizer [39, 40]. IC-GN is a
computationally efficient iterative method that seeks to find an
optimal value of prc (denoted as prc

∗ ) that minimizes CLS when
prr=0. In each iteration, IC-GN method finds a small defor-
mation Δp (prr in equation (4)) of the initial reference subset
that best matches the deformed reference subset described by
prc. The resulting prr is then used to update prc (see Fig. 3). The
compact form of CLS for the IC-GN iterations is:

Fig. 1 The basic steps of DIC algorithm implemented in Ncorr. First, the
initial guess for the displacement pg={u

(g),v(g),0,0,0,0}T is found. This
guess is used as the initial input to the iterative optimization scheme,

which finds a refined solution pr={u,v,∂u/∂x,∂u/∂y,∂v/∂x,∂v/∂y}T

allowing for subwindow deformation

(a)

(c)(b)

(d)
Fig. 2 The procedure for finding
the initial guess. A reference
subset (a) is padded to the
full-size (b) and is convolved with
the current image to find the
normalized cross correlation (c).
The output is an array of
correlation coefficient values. The
location of the subset is recovered
with respect to the current
configuration by locating the
maximum correlation coefficient
(d)
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where pold is the value of prc found from the previous iteration.
In order to find the minimum of CLS, we employ an iterative
procedure based on the Taylor series expansion

∇∇CLS 0ð ÞΔp ¼ −∇CLS 0ð Þ ð10Þ
where ∇CLS(0) is the gradient of CLS at p=0 and ∇∇CLS(0) is
the hessian of CLS at p=0. The explicit form of these quanti-
ties is shown in Appendix A1. Note that the computation
requires an interpolation scheme. Ncorr uses Biquintic B-
splines, as described in Appendix A2. In each iteration, Δp
is solved using Cholesky decomposition since the initial guess
ensures that parameters are in the vicinity of a minimum,
where the hessian should be symmetric positive definite. If
the Cholesky decomposition fails, then the hessian is not pos-
itive definite and the point is rejected. The next approximation
to prc

∗ is found by composing the old value with the inverse of
Δp, which is justified so long as the displacements inΔp are
small inmagnitude. A graphical representation of the update is
shown in Fig. 3. This update can be written in matrix form as
follows

1þ du

dxnew

du

dynew
unew

dv

dxnew
1þ dv

dynew
vnew

0 0 1

26664
37775 ¼

1þ du

dxold

du

dyold
uold

dv

dxold
1þ dv

dyold
vold

0 0 1

26664
37775

*

1þΔ
du

dx
Δ
du

dy
Δu

Δ
dv

dx
1þΔ

dv

dy
Δv

0 0 1

26664
37775
−1

ð11Þ
w Δξre f ; pnew
� � ¼ w w Δξre f ;Δp

� �−1
; pold

� �
ð12Þ

Here pold is set to pnew at the beginning of every iteration.
The inverse compositional method gets its name from how
pold is updated in equations (11–12). The crucial advantage
of the method is that the hessian is computed at ξre f c þ w

Δξre f ; 0
� �

and does not change during iterations, i.e. it only

needs to be computed once. This results in large computation-
al savings [39].

A summary of the inverse compositional method is shown
below (the steps follow from Ref. [39] but have been adapted
for DIC):

Precomputation for entire DIC Analysis:

1) (Optional) Precompute QK½ � c½ � x f −2:x fþ3;y f −2:y f þ3ð Þ
QK½ �T ([QK] is defined in equation (34) and [c] in
equation (35)) for the entire current image.

2) Evaluate ∂
∂exre f i f exre f i ;eyre f j

� �
and ∂

∂eyre f j f exre f i ;eyre f j

� �
for

the entire reference image using equation (37) and

equation (38).
Precomputation per subset:

3) Compute “steepest descent images”, equation (25).
4) Compute the GN-Hessian in equation (24).
5) Set initial pold to initial guess from NCC or neighbor-

ing deformation data
Computation per iteration per subset:

6) Compute warped f ina l cu r r en t subse t g
ξre f c þ w Δξre f ; pold

� �� �
using equation (33)

7) Compute gradient, ∇CLS(0), using equation (21)
8) Compute Δp using equation (10) with Cholesky

decomposition
9) Update pold using equation (11)
10) Exit iteration when norm of Δp is small.

Reliability Guided DIC

The steps described previously allow for the calculation of
displacement data of a single material point located at the
center of a reference subset. In order to obtain displacement
values for all subsets, Ncorr uses the Reliability Guided (RG-
DIC) method [41]. For completeness, a brief summary of the
method is given below, although the reader is directed to Ref.
[41] for an in depth description.Fig. 3 A graphical representation of the inverse compositional update
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The overall method is shown in Figs. 4 and 5. The compu-
tation begins by selecting a seed point. This is the location of
the center of the initial reference subset used in the analysis
and is shown as the green cross with “Seed” in Fig. 5. This
point is the only one which uses NCC to obtain an initial
guess. The rest of the subsets will use neighboring information
as an initial guess.

After calculating the corresponding deformation parame-
ters and CLS for the seed point, it is “inactivated,” which is
done by forming a logical mask initialized to false; analyzed
points are set to true. A queue is formed (as a heap data struc-
ture) and then CLS, the six deformation parameters, and the

location of the center of the subset, xre f c ; yre f c

� �
, are stored in

the queue, which is shown as the 2nd step in the flow diagram
of Fig. 4. The program enters a while loop and at each iteration
the top entry (this entry will have the lowest CLS since the
queue is a heap) is popped from the queue. The data for the
queue point is then added to the data plots. Next, the four
surrounding material points, if they are still active or within
the region of interest (ROI), are analyzed using the displace-
ment data from the queue point as the initial guess for the
nonlinear optimization scheme. The process is repeated until
the queue is empty; at this stage all contiguous points of inter-
est will be analyzed. The aforementioned process is summa-
rized in the flow diagram of Fig. 4.

The benefits of this process are two-fold. First of all, it is
robust in that bad data points (i.e. data points with high CLS)
are processed last, which prevents this data from being used as
the initial guess for neighboring points. In addition, it is com-
putationally efficient because only the seedpoint needs to use
NCC (which is computationally expensive) to obtain an initial
guess. Moreover, the initial guess provided by adjacent subset
is typically quite good (as long as the subset spacing is rela-
tively small) because displacement fields are, in general, rela-
tively smooth. One negative aspect of this algorithm is that it
must be done serially, although in Ncorr this has been
circumvented by partitioning the ROI into spatial domains that
are calculated in parallel. This process is described in more
detail in “Multithreaded RG-DIC” section.

Computation of Strains

Strains are more difficult to resolve than the displacement
fields because strains involve differentiation, which is sensi-
tive to noise. This means any noise in the displacement field
will magnify errors in the strain fields. Ncorr uses the Green-
Lagrangian strains, which are obtained by using the four dis-
placement gradients as follows

Exx ¼ 1

2
2
∂u
∂x

þ ∂u
∂x

� �2

þ ∂v
∂x

� �2
 !

ð13Þ

Fig. 4 Flow chart of the RG-DIC algorithm. In the neighbor calculation
phase, the central white cross is the material point loaded from the queue.
The three black crosses are unanalyzed points which are added to the
queue. The green cross has already been analyzed and is skipped
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Exy ¼ 1

2

∂u
∂y

þ ∂v
∂x

þ ∂u
∂x

∂u
∂y

þ ∂v
∂x

∂v
∂y

� �
ð14Þ

Eyy ¼ 1

2
2
∂v
∂y

þ ∂u
∂y

� �2

þ ∂v
∂y

� �2
 !

ð15Þ

The displacement gradients are directly obtained through
the IC-GN scheme. But these values are noisy, and thus must
be “smoothed” in some way before calculating the strain
fields. Instead, Ncorr uses the strain window algorithm pro-
posed in Ref. [35] to calculate the displacement gradients and
the subsequent Green-Lagrangian strains. A least squares
plane fit on a subset of displacement data is used to find the
plane parameters in equations (13–15) and thus the displace-
ment gradient data from the RG-DIC algorithm is not utilized

uplane x; yð Þ ¼ au;plane þ ∂u
∂xplane

� �
xþ ∂u

∂yplane

 !
y ð16Þ

vplane x; yð Þ ¼ av;plane þ ∂v
∂xplane

� �
xþ ∂v

∂yplane

 !
y ð17Þ

The strains are found as a solution of an over-constrained
system of equations [42]

1 xre f first i
−xre f c yre f first j

−yre f c
⋮ ⋮ ⋮
1 xre f last i

¼ xre f c yre f last j
−yre f c

24 35
au;plane
∂u

∂xplane

� �
∂u

∂yplane

 !
8>>>>><>>>>>:

9>>>>>=>>>>>;
¼

u*rc xre f first i
; yre f first j

� �
⋮

u*rc xre f last i
; yre f last j

� �
8><>:

9>=>;

ð18Þ

The size of the subset window for computing the strains
can be independently controlled. Once these parameters are
solved, they can be used in equations (13–15) to determine
Exx, Exy, and Eyy. The process is applied to the entire displace-
ment field in order to obtain a corresponding strain field.

New Algorithms Implemented in Ncorr

New algorithms implemented in Ncorr are: 1) a multithreaded
version of RG-DIC, 2) a method for large strain calculation by
automatically updating the ROI and adding displacements,
and 3) an Eulerian to Lagrangian conversion algorithm to
analyze discontinuous displacement fields.

Multithreaded RG-DIC

Ncorr extends RG-DIC to multithreading by forming a
Bthread-diagram^ (an integer array) based on seed point loca-
tions within a 4-way connected region in the ROI. This idea is
demonstrated in Fig. 6. It starts by growing subregions around
each seed, one point at a time per iteration, until the entire ROI
has been segmented. This ensures the region around each seed
is contiguous, and also divides the work relatively evenly. An
example thread diagram is shown on the right side of Fig. 6. It
is an array that is same size as the original ROI, but has values
which correspond to each thread. For example, the region
marked Bthread 0^ on Fig. 6 contains zeros within that region,
and for Bthread 1^, the array has ones, etc., while the black
region outside the ROI contains negative ones (an impossible
value for a thread). This idea is well suited for multithreading
because it scales well, in that as the limit of the number of
seeds approach the number of points within the region of
interest, it simply approaches the older methods of DIC,
wherein every subset’s initial guess is found through NCC.

ROI Updating for Large Deformations

A challenging problem in DIC involves material undergoing
large deformations. The deformed sample may change so dra-
matically that a good correlation of DIC subsets between

Fig. 5 The approach used by RG-DIC algorithm when determining de-
formation parameters for a grid within a region of interest. The direction
proceeds in the direction of the lowest CLS value
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current and reference image will not be possible. At the same
time, there is significant interest in applying DIC to materials
that can undergo large deformations such as soft materials,
polymers, elastomers as well as biological materials. A strat-
egy to monitor deformation of such materials involves a well
patterned sample and a dataset of images at intermediate
stages of the deformation so that the deformation within two
adjacent images is not large enough to cause problems. Ncorr
has been properly modified to create composite displacement
maps that can subsequently be used to obtain the strain field.
An important part of this process involves updating the ROI.
The method implemented in Ncorr works by forming a
boundary around the ROI. This boundary is then updated
based on displacement values obtained through the last calcu-
lated displacement field for the last reference image. This hap-
pens by sampling the last calculated displacement field at the
values at the boundary. These displacement values are then
added to the boundary coordinates. The boundary coordinates
are treated as a polygon, and are used through a polygon fill
algorithm [43] to update the ROI. Updates occur either when
the seeds placed on the original reference image either exceed
certain cutoffs (i.e. correlation coefficient or the number of
allowable iterations for convergence) or through a preset num-
ber, known as a Bleapfrog^ parameter. The boundary updating
procedure is demonstrated in Fig. 7.

It’s important to note that most of the compounding error
will occur for datapoints near the boundary of the ROI. This is
because the displacement fields are interpolated with biquintic
B-splines, so the fields actually need to be extrapolated first
before obtaining the B-spline coefficients for datapoints near
the border. Therefore, interpolated values near the border will
be the most affected. However, one of the positive aspects of
this update scheme is that because the ROI itself is updated
when the reference image is updated (unlike the approach of
Ref. [27]), the subset deformations are not perpetuated. This
means that although this method might result in worse perfor-
mance for boundary displacement points, it’s possible to ana-
lyze samples undergoing large deformations, provided

enough intermediate pictures are provided and the pattern on
the updated reference images is sufficient enough to allow for
the tracking algorithms to perform correctly.

Eulerian to Lagrangian Conversion

This technique is used to analyze discontinuous displacement
fields in Ncorr. It relies on the fact that discontinuities (i.e.
cracks) are clearly visible in the current image. The idea is to
create the ROI for the current image (rather than the reference
image), perform DIC, and then use an Eulerian to Lagranian
algorithm to convert the displacements back to the Lagrangian
perspective.

The ROI is updated through a similar technique used in the
large strain calculation algorithm. Once the ROI is updated
(shown in Fig. 8), every point in the updated ROI is analyzed

(a) (b)Fig. 6 Ncorr implementation of
multithreaded RG-DIC. (a) Four
seeds are placed within an ROI,
which is then partitioned based on
seed placement. (b) Each partition
is then assigned a thread through a
Bthread diagram^

Fig. 7 A graphical example of ROI updating and displacement Badding^
scheme. Here, there is a single update between the current image rotated
10° and the current image rotated 20°.When the reference image needs to
update, the boundary (highlighted in green) is used to sample
displacement values (shown in the bottom row) in order to update the
boundary. This boundary is then used to form the updated ROI through a
polygon fill routine. The displacements are then Badded^ by sampling
displacement values using the original reference image and then finding
their corresponding position in subsequent displacement fields (note that
this requires interpolation). The end result is shown on the bottom right
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by first determining which integer point in the current dis-
placement field maps closest to that point. This is fed as an
initial guess to a nonlinear optimizer to determine the sub
pixel displacements using biquintic B-spline interpolation on
the displacement field. This initial point also acts as a seed and
initiates a queue. The algorithm then proceeds to use neigh-
boring points as the initial guess to the nonlinear optimizer in
much the same way as the RG-DIC algorithm described in the
BCore DIC Algorithm Description^ section. The routine fin-
ishes when all the points in the updated ROI have been ana-
lyzed, which results in a displacement field with respect to the
Lagrangian perspective.

Validation and Verification

The code was verified and validated using a variety of tests.
The first set of tests involved idealized simulated images,
where results could be verified to numerical precision. Further
tests involved analysis of the Society for Experimental
Mechanics’s (SEM) 2D-DIC challenge simulated datasets.
The DIC challenge provides a number of tests that simulate
many of the problems and issues encountered in applications,
such as noisy images and patterns of limited resolution and
contrast. The full analysis of simulated SEM 2D-DIC images
can be found in the Supplementary Material section accom-
panying the online version of this article. The analysis of one
representative example, Sample 14 from the DIC challenge, is
shown in this section.

Uniaxial Strain State and Rigid Body Rotation

Numerically simulated images were used to demonstrate the
correctness of the implementation of the algorithms. The sim-
ulated images were resampled using biquintic B-splines in
order to match the interpolation scheme used by Ncorr. This
is a stringent test of parts of the algorithm, since the results

should be Bexact.^ The current image was set as the unde-
formed image (taken previously with a generic speckle pat-
tern). Then, the inverse of the desired transformation is ap-
plied to the current image using biquintic B-splines in order to
obtain the reference image. If the undeformed image is set as
the reference image and then a forward transformation is ap-
plied to it, the results will not be Bexact,^ even if biquintic B-
splines are used, since in the forward transformation the ref-
erence image is being interpolated. The images were saved as
.mat files since any standard image formats (jpg, png, tif,
etc.…) use either unsigned integers or a form of data compres-
sion which will alter the data.

The imposed known deformation for the image is a uniax-
ial stretch of increasing magnitude, εn along a 30° angle with
respect to the horizontal direction. A DIC subset radius r=
15 pixels and a strain window of 15 pixels were used in the
analysis of images with a size of 600×600 pixels. The im-
posed strain εn ranged from 0.1 to 0.65 since beyond 0.65,
the normalized cross correlation algorithm failed to provide
the initial guess [44]. Through a simple strain transformation,
the strains εxx, εxy, and εyy were obtained. These strains were
applied by determining the displacement gradients from equa-
tions (13–15) through a nonlinear solver. The transformation
was formed using an augmented matrix from equation (11)
and then the inverse transformation was applied to the current
image to obtain the reference image. The results from the
analysis are shown in Fig. 8(a) where the average absolute
value of the error in the calculated εn was obtained from a
transformation of the three Green-Lagrangian strains over
the ROI. We note that the initial guess in Ncorr is obtained
by computing NCC at integer location assuming that the sub-
set deformation does not involve strains. This assumption is
clearly violated when strains are large, which is the reason for
inability of the code to analyze strains larger than 0.65 in this
example. In practical applications, this limitation is overcome
by using intermediate images to propagate the initial guess.
The intermediate analysis was intentionally not used here,

,

(a) (b)Fig. 8 The error in strain
measurements in two verification
tests. (a) Uniform strain applied at
an angle of θ=30° with respect to
the horizontal axis. Here εn is the
prescribed strain and ε is the
measured strain. Angle brackets
denote the average over ROI. (b)
Rigid body rotation. Here θo is the
prescribed angle and θ is the
measured angle. Angle brackets
denote the average over ROI
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even though it is implemented in Ncorr (as described in BROI
Updating for Large Deformations^ section).

A similar analysis was performed for images undergoing
rigid body rotation (RBR) and their analyzed Ncorr result was
compared to the prescribed value. The synthesized rotated
image was formed using the same set as the uniaxial stretch
and the analysis was done with the same subset and strain
radius sizes as the uniaxial strain. The rotation images were
generated up until a rotation of about 10°, because after that,
the normalized cross correlation algorithm failed to provide
the initial guess. This is related to the assumed form of dis-
placement, equations (1) and (2), which can only describe
small rotations. In practice, this limitation can again be over-
come using intermediate images. The present analysis inten-
tionally did not employ the intermediate images. Figure 8(b)
shows a comparison of the calculated rotation value versus the
prescribed rotation. For both Figs. 8(a) and (b), the errors are
on the order of 10−13 (essentially the numerical precision),
indicating the correct implementation of the relevant parts of
the overall DIC algorithm.

Case Study: Heterogeneous Deformation

Ncorr was validated using the entire set of simulated images
from SEM 2D-DIC challenge (see Supplementary Material
section). Sample Set 14 is a representative example that con-
sists of a reference image as well as three deformed images
with a known sinusoidal deformation with increasing strain
gradient and imposed noise. Figure 9 shows the horizontal
displacement (u) of Sample 1 and 3 with the smallest and
largest strain gradient respectively. The analysis was per-
formed using a subset radius of 20 pixels.

Sample 14 highlights many of the issues encountered in
applications of DIC. A typical size of the speckle pattern, as
assessed from the reference image power spectrum, is approx-
imately 8 pixels (see Supplementary Material). This poses a
limitation on the subset size, since the latter must contain
enough distinct features to yield a good correlation. Further-
more, smaller subset radii tend to be affected by the noise
present in each simulated image. On the other hand, large
subset or strain window sizes tend to smoothen the field to
the extent that the localized deformation may not be correctly
captured. Table 1 shows a summary of the errors obtained
using various subset and strain window sizes for each of the
three samples in Set 14. To further illustrate this analysis,
Fig. 10 shows the profiles of the horizontal displacement
u(x) of Sample 1 and Sample 3 averaged over y for three
different subset radii r=10, 20 and 30pixels together with
the prescribed displacement. The error bars show the standard
deviation along the y-direction. The smallest subset radius of
10 pixels contains on average 2.5 distinct features and yields a
rather noisy field, as evidenced by the large error bars for both
Sample 1 and Sample 3. The effect of the superimposed noise

decreases with increasing subset radius with the subset size of
30 pixels having the smallest deviation from the prescribed
displacement. While such large subset sizes are perfectly ac-
ceptable for relatively smooth displacement fields in Sample
1, they tend to over-smooth sharp gradients at large x in Sam-
ple 3. The effect of subset and strain size on the calculated
strains along the horizontal direction is shown in Fig. 11 for
Sample 1 and Sample 3. The strain field is significantly noisier
than the displacement field with a substantial reduction of the
standard deviation with increasing subset and strain window
size. However, at the largest subset/strain window (r=30 and
rE=20pixels) the highly localized deformation of Sample 3 is
again not adequately captured. As is so often the case, the DIC
analysis involves a trade-off between spatial resolution and
resolving small displacements and strains. Therefore, a careful
examination of the displacement and strain field for different
subset and strain window sizes is necessary in applications to
fully assess the quality of the analysis. Ncorr provides the
necessary flexibility to vary parameters so that the optimum
set for each experiment can be identified.

Case Studies: Experimental Datasets

In this section we demonstrate applications of Ncorr to anal-
ysis of experimental datasets from the SEM 2D-DIC chal-
lenge and from our own experiments on Compact Tension
(CT) polycrystalline nickel superalloy sample under tension.
These illustrative examples were chosen because they high-
light many of the interesting features of the code (e.g. the
ability to analyze complex shaped samples and capability to
analyze discontinuous displacement fields), while highlight-
ing the difficulties frequently encountered in the analysis of
experimental data. The above images (available for download
on the Bdownloads^ section of http://www.ncorr.com) were

(a)

(b)

Fig. 9 Horizontal displacement (u) of the heterogeneous deformation of
Sample 14 in the SEM 2DDIC challenge. (a) Sample 1 and (b) Sample 3
with a subset radius r=20 pixels
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analyzed using version 1.2.0 of Ncorr and MATLAB 7.8.0
(R2009a).

Asymmetric Plate Hole of Finite Size Tested in Tension

The SEMDIC challenge contains a dataset for a tension test of
a rectangular plate with a circular hole. Here we use this test to
demonstrate Ncorr’s ability to analyze complex regions of
interest (ROI). The advantage of clearly defining a complex
boundary is that the subsets closest to the boundary will not
necessarily be discarded in the analysis thus giving informa-
tion up to a subset size close to the boundary. A set of images
of a rectangular sample with a hole and unspecified material
properties can be found in the SEM 2DDIC challenge website
(http://www.sem.org/dic-challenge/). The hole is offset from
the plate center and the sample has finite dimensions so thatW
~3D whereW is the sample width and D is the hole diameter.
The dataset consists of a reference image and 10 images
obtained at increased loading levels. Each image has a size
of 400×1040 pixels.

Figure 12 demonstrates Ncorr analysis of this example at
two different loading stages (Images 4 and 8). In order to
compare the obtained maps with the analytical solution for
infinite plate under tension (Panel A), we chose to focus on
the principal angle obtained from the Lagrangian strains
tan(2θp)=Exy/(Exx−Eyy). The principle angle is a sensitive
function of all the three strains and does not depend on the
material properties, assuming the deformation is in the elastic

range of the material. As is apparent from Panel B, the analysis
of Image 8 with relatively small subset and strain window
sizes captures reasonably well the near-hole field, while the
far field differs appreciably from the analytical solution. With
larger subset and strain window sizes (Panel C), the near field
is no longer resolved and the far-field is somewhat over-
smoothed. The strains at an earlier stage of the experiment,
shown in Panel E and F are significantly smaller and are poor-
ly resolved by the smaller subset and strain windows. As a
consequence, the results for Image 4 are considerably less
satisfactory. We note that the all of the results display appre-
ciable asymmetry both in the near and in the far field. In order
to further investigate the origin of these discrepancies, we
have conducted a number of numerical experiments using a
2D Finite Element Method (FEM) model of an isotropic, lin-
ear elastic/perfect plastic solid with similar geometry to the
DIC challenge sample. An example of such solution is shown
in Panel D of Fig. 12. The numerical analysis suggests that the
slight asymmetry in the plate geometry is not sufficient to
account for the observed properties of the field. We propose
that the more likely source of the asymmetry lies in asymmet-
ric loading conditions.

Fracture Toughness Test of a Polycrystalline Nickel
Superalloy

The final example demonstrates a practical application of
Ncorr to monitoring the crack-tip evolution during a room

Table 1 SEM DIC Sample Set 14 displacement and strain deviation from prescribed for different subset and strain parameters. Here the mean
deviation u0 from is 〈(u−u0)2〉1/2 and that from εxx,0 is 〈(εxx−εxx,0)2〉1/2, where 〈…〉 denotes average over y direction in the ROI

Sample r rε Mean deviation
from u0

Max deviation
from u0

Mean error, u Mean deviation
from εxx,0

Max deviation
from εxx,0

Mean error, εxx

1 10 5 4.7×10−3 3.0×10−2 2.8×10−2 7.1×10−4 7.8×10−3 3.4×10−3

1 10 10 4.7×10−3 3.0×10−2 2.8×10−2 4.7×10−4 4.5×10−3 2.0×10−3

1 20 5 2.8×10−3 7.6×10−3 1.1×10−2 2.0×10−4 6.7×10−4 6.3×10−4

1 20 10 2.8×10−3 7.6×10−3 1.1×10−2 1.7×10−4 5.8×10−4 6.3×10−4

1 20 20 2.8×10−3 7.6×10−3 1.1×10−2 1.3×10−4 3.5×10−4 4.1×10−4

1 30 20 2.3×10−3 6.3×10−3 7.1×10−3 8.7×10−5 2.9×10−4 2.3×10−4

2 10 5 5.0×10−3 2.4×10−2 2.8×10−2 7.0×10−4 4.6×10−3 3.4×10−3

2 10 10 5.0×10−3 2.4×10−2 2.8×10−2 4.9×10−4 2.4×10−3 2.0×10−3

2 20 5 3.1×10−3 9.9×10−3 1.1×10−2 2.2×10−4 9.0×10−4 9.5×10−4

2 20 10 3.1×10−3 9.9×10−3 1.1×10−2 2.0×10−4 8.2×10−4 6.4×10−4

2 20 20 3.1×10−3 9.9×10−3 1.1×10−2 1.8×10−4 1.7×10−3 4.1×10−4

2 30 20 4.5×10−3 1.3×10−2 7.6×10−3 2.2×10−4 2.3×10−3 2.4×10−4

3 10 5 5.2×10−3 2.1×10−2 2.9×10−2 6.7×10−4 2.5×10−3 3.4×10−3

3 10 10 5.2×10−3 2.1×10−2 2.9×10−2 4.7×10−4 1.7×10−3 2.0×10−3

3 20 5 5.5×10−3 2.0×10−2 1.1×10−2 3.4×10−4 1.4×10−3 9.5×10−4

3 20 10 5.5×10−3 2.0×10−2 1.1×10−2 3.4×10−4 1.2×10−3 6.3×10−4

3 20 20 5.5×10−3 2.0×10−2 1.1×10−2 4.5×10−4 1.6×10−3 4.0×10−4

3 30 20 1.2×10−2 3.4×10−2 7.3×10−3 7.5×10−4 2.5×10−3 2.4×10−4
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temperature fracture toughness test of a polycrystalline nickel
superalloy.

A Compact Tension (CT) sample of polycrystalline IN100
nickel superalloy [45–47] with an average grain size of 3–
5 μm and composition shown on Table 2 was prepared by
wire electrical discharge machining (EDM). The CTspecimen
was polished using 6.5 μm diamond lapping paste. The sam-
ple had a width of 30.5 mm, thickness of 2.54 mm, and notch
length of 9.5 mm. The sample was cyclically loaded (Pmin=
170 N; Pmax~1700 N and R=0.1) until a fatigue crack was
initiated. The cyclic experiment continued until the total crack
length to sample width ratio was a/W~0.5, where a is the
crack length and W is the sample width. For this sample, the
fatigue crack was tilted 6° with respect to the horizontal axis.

The sample was subsequently patterned using an in-house
patterning apparatus with Montana Gold white acrylic paint. A
long distance microscope (LDM) (Questar 100) mounted on a
tripod and attached to a camera SBIG 8300M,which has a high
quality full-frame CCD sensor (Kodak KAF-8300) with 16-bit

read out and 3326×2504 pixel resolution. The field of view is
5 mm and was aligned so that the crack tip end was close to the
center left side of the image. The pattern and microscope optics
allowed for both dark-field images and bright field images to be
obtained. The dark field images were used in the DIC analysis
whereas the bright field images allowedmonitoring of the crack
tip size and texture to be acquired during a test.

The CT sample was loaded in tension using anMTS servo-
hydraulic load frame. At a small load of 90 N the reference
image and a rigid body translation (RBT) image were obtain-
ed. The RBT image was used to assess the quality of the
pattern. The load was increased and bright field and dark field
images were obtained at several intervals until fracture oc-
curred at a load of ~6400 N. Bright field images showed that
the crack tip length did not change substantially until the sam-
ple was close to fracture.

In order to perform the DIC analysis, a mask was formed
by uploading a bright field image in Image J software [48] and
manually outlining the crack tip length (shown as a red line in

Sample 1 Sample 3

r=10 pixels

r=30 pixels

r=20 pixels

r=10 pixels

r=30 pixels

r=20 pixels

Fig. 10 Horizontal displacement
(u) of the heterogeneous
deformation of Sample 14 in the
SEM 2D DIC challenge. Left:
Sample 1 and Right: Sample 3 for
different subset radii r=10–
30 pixels. The red line is the
prescribed displacement. Blue
line shows the calculated
displacement averaged over the y-
direction with the standard devia-
tion along y-direction
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Fig. 13 with the crack tip indicated by the red arrow). This
mask was then used as a complex region of interest (ROI) in
the DIC analysis. We note that Ncorr has the capability of
performing an Eulerian to Lagragian conversion to obtain data
within a subset diameter closer to the crack tip region. How-
ever, in this example such analysis does not provide substan-
tially different results since the crack-tip length did not change
appreciably during loading.While it is still possible to analyze
cracked samples by using the Bregular^ analysis and then
filtering out bad points through a correlation coefficient cutoff,
any subset that borders a crack will be removed from the data
plot. There is a tradeoff between the amount of time required

Sample 1 Sample 3
r=10 pixels; 
rE=5 pixels

r=10 pixels; 
rE=5 pixels

r=20 pixels; 
rE=10 pixels

r=20 pixels; 
rE=10 pixels

r=30 pixels; 
rE=20 pixels

r=30 pixels; 
rE=20 pixels

Fig. 11 Normal strain along
horizontal direction(εxx) for
Sample 14 in the SEM 2D DIC
challenge. Left: Sample 1 and
Right: Sample 3 for different
subset radii (r) and strain sizes
(rE). The red line is the prescribed
strain, the blue line shows the
average strain from Ncorr

p

x/
a

x/
a

y/a y/a y/a

(a) (b) (c)

(f)(e)(d)

Fig. 12 The near field principal angle parameter for (a) analytical
solution; (b) Image 8 of sample 12 analyzed with subset radius 10 and
strain window of 10; (c) the same as (b), but with subset radius 15 and
strain windows of 15; (d) FEM model; (e),(f) Image 4 of sample 12
analyzed with the same parameters as in (b) and (c). The x, y
coordindates are normalized with a, the hole radius

Table 2 Chemical Composition of IN100 Compact Tension Specimen
(% weight)

Al B C Co Cr Mo Ti V Zr Ni

IN100 4.90 0.02 0.07 18.20 12.10 3.22 4.20 0.70 0.07 56.52
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for the analysis and the amount of time needed to trace a
complex ROI so that an additional layer of data could be
added near the discontinuity.

The effective strain, Eeff along with the respective bright
field image is shown in Fig. 13(a) and (b) for F~3025N and in
Fig. 13(c) and (d) for F~4100 N. The effective strain is de-

fined as follows: Eeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3 ei jei j
� �q

where eij=Eij−Ekkδij/3

is the deviatoric component of the Langrangian strain. Both
analyses were done with a subset window radius of SR=
80 pixels (~110 μm), an overlap of 1 pixel, and a strain win-
dow radius of 40 pixels. The noise level of the strain field is
found to be 10−3 as assessed from an RBT image obtained at a
small applied load (F~90 N).

As the loading increases, there are two distinct sectors
where deformation is localized as seen in the effective
strain plot of Fig. 13(c). The largest Eeff component

occurs at 22° with respect to the horizontal (x-axis). This
continues up to r/a=0.01 where the direction of the larg-
est Eeff becomes nearly horizontal. The corresponding
bright field optical image obtained at F~4100 N shows
the two highly localized deformation zones. In this exam-
ple, the pattern is a limiting factor in the analysis of the
strain field. A more refined pattern could be used to re-
solve the strain near the crack tip and provide more quan-
titative information on the crack tip evolution.

Summary

This paper documents the core algorithms of Ncorr, a modern
open-source DIC software package. Ncorr is freely available
to the scientific community and can be easily adapted to suit a

Eeff Eeff(a)

(d)

(c)

(b)

Fig. 13 Polycrystalline nickel superalloy crack tip deformation at (a–b)
F~3025N and (c–d) F~4100N. The effective strain component is shown
on the top row and the corresponding bright field optical image is shown

in the bottom row. The contrast and brightness of the bright-field images
has been digitally enhanced
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wide range of applications. Several verification tests and sam-
ple applications have been described.
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Appendix A1. The Gradient and Hessian Quantities

In order to simplify the calculations, the following assump-
tions are used

d

dp
f mð Þ≈0 ð19Þ

d

dp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
f ξre f c þ w Δξre f ; 0
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− f m

	 
2r !
≈0 ð20Þ

The gradient for the IC-GN method based on equation (10)
is

∇ CLS 0ð Þ ¼ dCLS 0ð Þ
dp

≈
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

f ξre f c þ w Δξre f ; 0
� �� �

− f m
	 
2r X f ξre f c þ w Δξre f ; 0

� �� �
− f mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

f ξre f c þ w Δξre f ; 0
� �� �

− f m
	 
2q

264
264

−
g ξre f c þ w Δξre f ; pold

� �� �
−gmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

g ξre f c þ w Δξre f ; pold
� �� �

−gm
	 
2r

3775 d

dp
f ξre f c þ w Δξre f ; 0
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ð21Þ

The hessian is

∇∇CLS 0ð Þ ¼ d2CLS 0ð Þ
dp2

≈
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Using the Gauss-Newton assumption

(a) (b)

Fig. 14 (a) Schematic of the B-spline coefficient calculation. Top-left:
original grayscale values array. Top-right: Copy and pad data; padding
parameter here is set to 2. Bottom-left: Deconvolution via the DFT for
each row and then each column. Bottom-right: The associated B-spline

coefficients for the top-left image. (b) Extension of (a) with the same gray
scale and B-spline coefficients. Black crosses represent integer pixel lo-
cations and the black circle (top-left) is the subpixel point being
interpolated

Exp Mech
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yields the hessian in the final form

∇∇CLS 0ð Þ≈dCLS 0ð Þ
dp2

≈
2X

f ξre f c þ w Δξre f ; 0
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Appendix A2. Biquintic B-Spline Interpolation

T h e q u a n t i t i e s d
dp f ξre f c þ w Δξre f ; 0

� �� �
a n d g

ξre f c þ w Δξre f ; pold
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require some form of estimation

through interpolation. Using the chain rule on d
dp f

ξre f c þ w Δξre f ; 0
� �� �

and equation (4), we obtain:

d

dp
f exre f i ;eyre f j

� �
¼ ∂

∂exre f i f exre f i ;eyre f j

� �
*
dexre f i
dp

þ ∂
∂eyre f j

f exre f i ;eyre f j

� �
*
deyre f j

dp

ð25Þ

The only two quantities we need to specifically compute

for equation (25) are ∂
∂exre f i f exre f i ;eyre f j

� �
and

∂
∂eyre f j f exre f i ;eyre f j

� �
. These can be computed in various ways

(sobel filter, finite difference, etc.), but in Ncorr, biquintic B-
spline interpolation is used.

The quantity g ξre f c þ w Δξre f ; pold
� �� �

also requires inter-

polation. Once ∂
∂exre f i f exre f i ;eyre f j

� �
and ∂

∂eyre f j f exre f i ;eyre f j

� �
are precomputed for the entire reference image, and g

ξre f c þ w Δξre f ; pold
� �� �

is computable, equation (19) and

equation (22) can be computed and iterated with equation
(10) to find a closer approximation to prc

∗ .
The main idea behind B-spline interpolation is to approxi-

mate the image grayscale surface with a linear combination of
B-spline basis Bsplines.^ These splines are scaled via the B-
spline coefficients and then the linear combination of these
scaled splines forms an approximation of the surface. Once
this approximation is complete, points can be interpolated
through 1-D convolutions (since biquintic B-spline interpola-
tion is separable [49]), which reduces to a series of simple dot
products. The equation for interpolation for the 1D case is

g xð Þ ¼
X
k∈Z

c kð Þβn x−kð Þ ð26Þ

where c(k),βn(x−k), and g(x) are the B-spline coefficient val-
ue at integer k, the B-spline kernel value at x−k, and the
interpolated signal value at x, respectively. Here n is the B-
spline kernel order, which is set to 5 (the quintic kernel) and Z
is the set of integers. Note that the B-spline coefficients are not
equivalent to the data samples (unlike in other forms of inter-
polation—i.e. bicubic keys [50]), and thus must be solved for
directly. The equation for the B-spline kernel is

βn xð Þ ¼ 1

n!

Xnþ1

k¼0

nþ 1
k

� �
−1ð Þk x−k þ nþ 1

2

� �n

þ
ð27Þ

When solved for the quintic case, this equation yields:

β5 xð Þ ¼

1

120
x5 þ 1

8
x4 þ 3

4
x3 þ 9

4
x2 þ 27

8
xþ 81

40
−2≥x≥−3

−
1

24
x5 −

3

8
x4 −

5

4
x3 −

7

4
x2 −

5

8
x2 þ 17

40
−1≥x≥−2

1

12
x5 þ 1

4
x4 −

1

2
x2 þ 11

20
0 x ≥ −1

−
1

12
x5−

3

8
x4 þ 5

4
x3−

7

4
x2 þ 5

8
x þ 17

40
1 x ≥ 1

1

24
x5 −

3

8
x4 þ 5

4
x3 −

7

4
x2 þ 5

8
x þ 17

40
2 x ≥ 1

−
1

120
x5 þ 1

8
x4−

3

4
x3 þ 9

4
x2−

27

8
x þ 81

40
30 x ≥ 2

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

ð28Þ

The first step of the interpolation process is to determine
the B-spline coefficients. They can be found by using
deconvolution. Applying Discrete Fourier Transform (DFT)
to equation (26) yields:

F gf g ¼ F cf g*F βnf g ð29Þ
where F{…} is the DFT. The goal is to solve for c, the B-
spline coefficients. This can be done by dividing the Fourier
coefficients of the B-spline kernel element-wise with the
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Fourier coefficients of the signal as shown:

F cf g ¼ F βnf g
F gf g ð30Þ

Taking the inverse DFT of equation (30) will then
yield the B-spline coefficients, although caution should
be exercised when using this method due to the circular
nature of the DFT. To mitigate wrap-around errors, pad-
ding should be used.

After obtaining the B-spline coefficients, the image array
can be interpolated point-wise by using equation (26). This is
carried out by taking a series of dot products with the columns
of the B-spline coefficient array and B-spline kernel, and then
taking a single dot product across the resulting row of inter-
polated B-spine coefficient values (note that the order of this
operation doesn’t matter). The first step of the aforementioned
process can be thought of as interpolating the 2DB-spline grid
to obtain 1D B-spline coefficient values, and then the second
step as interpolating the grayscale value from these 1D B-
spline coefficient values.

The steps for obtaining the B-spline coefficients are
outlined below:

1. Make a copy of the grayscale array and pad it (anymethod
can be used; Ncorr uses the border values to expand the
data as shown in the top right of Fig. 14(a)). Then, sample
the B-spline kernel at −2,−1,0,1, 2, and 3. This will form
the quintic B-spline vector

bo ¼ 1=120 13=60 11=20 13=60 1=120 0f gT ð31Þ

2. Pad the kernel with zeros to the same size as the
number of columns (the width) of the image gray-
scale array. Take the FFT of the padded kernel, and
then store it in place.

3. Take the FFT of an image row, then divide the Fourier
coefficients element-wise of the padded B-spline with
the Fourier coefficients from the image row. After-
ward, take the inverse FFT of the results and store
them in place (in the padded grayscale array). This
is done for all the image rows as shown on the bottom
right of Fig. 14(a).

4. Repeat steps 2–3, except column-wise, with the array ob-
tained at the end of step 3. The result will be the B-spline
coefficients of original image array as shown on the bot-
tom right of Fig. 14(a).

Now that the B-spline coefficients have been obtained, we
can interpolate values at sub pixel locations. The steps are
outlined below:

1. Pick a subpixel point, excur;eycurð Þ, within the image array
to interpolate.

2. Calculate Δx and Δy, where:

Δx ¼ excur −x f
Δy ¼ eycur−y f

ð32Þ

where xf = floor(excur) and yf = floor( cur).
3. Perform the operation in equation (32) to obtain the inter-

polated grayscale value.

g excur;eycurð Þ

¼ 1 Δy Δy2 Δy3 Δy4 Δy5
	 


QK½ � c½ � x f −2:x fþ3;y f −2:y fþ3ð Þ QK½ �T

1
Δx
Δx2

Δx3

Δx4

Δx5

26666664

37777775
ð33Þ

where [QK] is the array defined:

QK½ � ¼

1

120

13

60

11

20

13

60

1

120
0

−
1

24
−

5

12
0

5

12

1

24
0

1

12

1

6
−
1

2

1

6

1

12
0

−
1

12

1

6
0 −

1

6

1

12
0

1

24
−
1

6

1

4
−
1

6

1

24
0

−
1

120

1

24
−

1

12

1

12
−

1

24

1

120

26666666666666664

37777777777777775
ð34Þ

and c½ � x f −2:x f þ3;y f −2:y f þ3ð Þ are the B-spline coefficients as

shown:

c½ � x f −2:x f þ3;y f −2:y f þ3ð Þ

¼

c x f −2;y f −2ð Þ c x f −1;y f −2ð Þ c x f ;y f −2ð Þ c x f þ1;y f −22ð Þ c x f þ2;y f −2ð Þ c x f þ3;y f −2ð Þ
c x f −2;y f −1ð Þ c x f −1;y f −1ð Þ c x f þ1;y f −1ð Þ c x f þ1;y f −1ð Þ c x f þ2;y f −1ð Þ c x f þ3;y f −1ð Þ
c x f −2;y fð Þ c x f −1;y fð Þ c x f ;y fð Þ c x f þ1;y fð Þ c x f þ2;y fð Þ c x f þ3;y fð Þ
c x f −2;y f þ1ð Þ c x f −1;y f þ1ð Þ c x f þ1;y f þ1ð Þ c x f þ1;y f þ1ð Þ c x f þ2;y f þ1ð Þ c x f þ3;y f þ1ð Þ
c x f −2;y f þ2ð Þ c x f −1;y f þ2ð Þ c x f ;y f þ2ð Þ c x f þ1;y f þ2ð Þ c x f þ2;y f þ2ð Þ c x f þ3;y f þ2ð Þ
c x f −2;y f þ3ð Þ c x f −1;y f þ3ð Þ c x f ;y f þ3ð Þ c x f þ1;y f þ3ð Þ c x f þ2;y f þ3ð Þ c x f þ3;y f þ3ð Þ

26666664

37777775
ð35Þ

The position of the required B-spline coefficients within
the B-spline array ultimately depends on the amount of pad-
ding used. Figure 14(b) gives an example of the location of the
coefficients within the B-spline array for a given xf and yf and
a padding of 2.

The left portion containing the Δy vector and the [QK]
matrix is the matrix form of resampling the quintic B-spline
kernel with a shift of Δy. Right multiplying this quantity by
c½ � x f ¼2:x f þ3;y f −2:y f þ3ð Þ yields the interpolated B-spline coeffi-

cients which form a row of values, as shown in the top right of
Fig. 14(b). When this quantity is right multiplied by [QK] and
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the Δx vector, it interpolates the gray-scale value we need
from the interpolated row of B-spline coefficients as shown
on the bottom left of Fig. 14(b).

Lastly, examining the portion central portion containing:

QK½ � c½ � x f −2:x f þ3;y f −2:y f þ3ð Þ QK½ �T ð36Þ

this term can be precomputed to increase the speed of the
program [37]. This precomputation for biquintic B-spline
interpolation requires a very large amount of storage (36
times the size of the padded B-spline coefficient array).
But, the space required may be worth the trade off for the
speed improvement. The largest computational bottleneck
in the DIC analysis is the interpolation step when calcu-
lating the components of the hessian, so the reduction in
computational time is worth the expensive memory
requirement.

At this point, the g excuri ;eycur j� �
quantity is calculable. The

last quantities to address are ∂
∂exre f f exre f i ;eyre f j

� �
and

∂
∂eyre f f exre f i ;eyre f j

� �
. These quantities can be computed by tak-

ing the partial derivatives of an equation of the same form as
equation (33) and setting Δx and Δy to zero (because these
are integer pixel locations) to obtain

∂
∂exre f f exre f i ;eyre f j

� �
¼ 1 0 0 0 0 0½ �* QK½ �* c½ � x f −2:x f þ3;y f −2:y f þ3ð Þ* QK½ �T*

0
1
0
0
0
0

26666664

37777775
ð37Þ

∂
∂eyre f f exre f i ;eyre f j

� �
¼ 0 1 0 0 0 0½ �* QK½ �* c½ � x f −2:x f þ3;y f −2:y f þ3ð Þ* QK½ �T*

1
0
0
0
0
0

26666664

37777775
ð38Þ

These quantities are precomputed for the entire reference
image before beginning the IC-GN method.
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