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Installation Requirements - 1.1 

1.1 - Installation Requirements 

Version Requirements:  

 Required: R2009a+ 

 Recommended: R2015a+ 

NOTE: Ncorr was developed on MATLAB R2009a and has not been tested on prior versions. 

Toolbox Requirements:  

 Required: Image Processing Toolbox 

 Required: Statistics Toolbox 

Operating System Requirements: 

 Recommended: Windows or Linux 

NOTE: Ncorr was developed on Windows 7. It has also been tested on Ubuntu 14.04LTS. Ncorr has not been tested on Mac OS. 

MEX Compiler Requirements: 

 Recommended: Visual Studio 2008+ or GCC 4.2+  

NOTE: Ncorr utilizes the STL library, so any compiler used must support STL. Ncorr also has an option to use OpenMP for users 

with multicore processors. If the use of multithreading is desired, then the C++ compiler must have support for OpenMP (do a 

google search if you aren’t sure).  If the use of multithreading isn’t needed, then any supported compiler which supports the 

STL library should work. 
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1.2 - MEX Setup 

First, make sure a supported C++ compiler has been installed on your computer. Find the version of your 

Matlab (i.e. R2015a) and then determine which C++ compilers are supported. For example, R2015a has 

the following supported compilers: 

  

http://www.mathworks.com/support/compilers/R2015a/index.html 

From this list, the Microsoft Windows SDK 7.1 appears to be the only free C++ compiler available for the 

R2015a release. If you have access to multiple compilers, then use the most recent compiler which has 

OpenMP support (i.e. if you have access to Microsoft Visual C++ 2013 Professional, then use it). Note 

that Windows SDK 7.1 does not support OpenMP, so if you are using this package then multithreading 

cannot be used, although the single threaded version of Ncorr will work. 

After downloading a supported compiler, make sure MEX has been set up properly in MATLAB. Type 

"mex -setup" in the MATLAB terminal as shown below: 

  

The output will be something similar to (on Windows using R2015a): 
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This means the compiler is set correctly to Microsoft Visual C++ 2013 Professional. If a compiler isn’t set, 

then follow the instructions in the terminal and set the proper compiler.
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1.3 - Automatic Installation 

Automatic installation has only been tested on Matlab R2009a and R2015a on Windows using Visual 

Studio, and R2015a on Ubuntu 14.04LTS using g++. Automatic installation should work with different 

versions of Matlab on Windows, but for Linux, only R2015a will work. This is because Mathworks 

updated the MEX interface for R2015a which changed how compiler flags are set in Linux. I’ve decided 

to keep things simple and just have automatic installation work best for the newest version of Matlab 

since this is what most researchers will have access to. If you are using an older version of Matlab on 

Linux, then perform manual installation (section 1.4). Furthermore, if you are using a different compiler 

on Windows (i.e. g++ through gnumex), then perform manual installation. 

After MEX is set up correctly, get the latest version of Ncorr from the ncorr.com website downloads 

section (as of this manual, the latest version is v1.2.1), as shown below:  

  

Then, navigate to the directory where you saved Ncorr. Make sure none of the files have been moved or 

altered. From there, type "handles_ncorr = ncorr" in the MATLAB terminal as shown below: 
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A dialogue box will appear about the compiled files missing. Since this is a fresh install, the files will not 

be compiled yet, so click OK to continue.  Next, a dialogue box will appear about OpenMP support: 

 

Click the checkbox for OpenMP if you have a multicore processor, want multicore support, and have 

already installed a supported compiler with OpenMP support (section 1.2 – also be sure to google the 

compiler to see if it supports OpenMP). The number of cores on your system is most easily determined 

by checking the task manager on Windows (or system processes on Linux) as shown below: 

  

In my case, my computer has 8 logical cores that can be utilized for computation. I only have four 

physical cores though, so I chose to use 4 cores for computation as shown below: 

 

NOTE: If you use all your cores during computation, generally any other applications on the computer will slow down drastically 

(such as browsing the internet), so if you plan on using your computer during computation, then it might be best to leave out a 

core or two.  

If you choose not to use multithreading, then just leave OpenMP support unchecked and click finish. The 

files should compile and display in the terminal as shown below: 
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If the files compile successfully (if not, an error message may appear – skip ahead to see what this 

means), a pop-up for setting the path will appear as shown below: 

 

The path needs to be set in order to upload images from other directories. This is only a temporary 

solution and the dialogue box will reappear if MATLAB is closed and reopened. For a more permanent 

solution, you can set the path manually through: File > Set Path > Add Folder from the MATLAB GUI and 

then clicking save. 

If the files compiled properly, a GUI for Ncorr should appear: 

  

If this is the case, Ncorr has most likely installed correctly and the installation should be complete. The 

next time you open MATLAB, you can open Ncorr again by typing "handles_ncorr = ncorr" into the 

MATLAB terminal and the GUI should appear without having to repeat the installation process. If the 

installation proceeded correctly, then you can go to the user guides in section 2. 
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If compilation fails, then the following error message may appear: 

  

In this case, the files did not actually compile properly. If all the above steps have been followed 

correctly and OpenMP support was enabled, then first try to reinstall Ncorr without OpenMP by clicking 

“OK”, retyping “handles_ncorr = ncorr” into the terminal, and then leaving the OpenMP support option 

unchecked. If compilation still fails, then you may need to use a different compiler OR complete the 

installation manually as described in section 1.4. If you get to this point, feel free to e-mail me at 

jblaber3@gatech.edu for assistance. 

If compilation completes successfully, but it is determined that the compiler doesn’t actually support 

OpenMP, the following error message will appear: 

 

In this case, you should be able to get Ncorr to work by simply disabling OpenMP support. Just click 

“OK”, retype “handles_ncorr = ncorr” into the terminal, and leave the OpenMP support option 

unchecked. If OpenMP support is desired, you need to use a different compiler that supports OpenMP.

mailto:jblaber3@gatech.edu
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1.4 - Manual Installation 

These steps show how to perform the manual installation of Ncorr, which involves the compilation of 

MEX files directly through the terminal, as well as the creation of an "ncorr_installinfo.txt" file which 

contains information about multithreaded support.  

The first step is to comment out the automatic compile section in the ncorr.m file. Add "%{" before the 

compile section and then "%}" after it as shown below: 

  

The next step is to manually compile all the necessary libraries and MEX files. At the time of writing this 

manual, there are three basic library .cpp files, and twelve MEX files which are listed in the table below: 

Library Files 
standard_datatypes.cpp 
ncorr_datatypes.cpp 
ncorr_lib.cpp 

MEX Files 

ncorr_alg_formmask.cpp  
ncorr_alg_formregions.cpp  
ncorr_alg_formboundary.cpp  
ncorr_alg_formthreaddiagram.cpp 
ncorr_alg_formunion.cpp  
ncorr_alg_extrapdata.cpp 
ncorr_alg_adddisp.cpp 
ncorr_alg_convert.cpp  
ncorr_alg_dispgrad.cpp 
ncorr_alg_testopenmp.cpp 
ncorr_alg_calcseeds.cpp 
ncorr_alg_rgdic.cpp 
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Start by compiling the libraries "standard_datatypes.cpp,” "ncorr_datatypes.cpp," and “ncorr_lib.cpp.” 

as object files by using the "-c" flag with MEX as shown below: 

  

Next, compile the following MEX files with: 

  

NOTE: When compiling the MEX files with linux, the standard_datatypes and ncorr_datatypes libraries will be compiled with an 

".o" extension instead of an ".obj" extension.  

The last three files that need to be compiled are “ncorr_alg_testopenmp.cpp", 

“ncorr_alg_calcseeds.cpp" and "ncorr_alg_rgdic.cpp." These files utilize OpenMP and thus needs to be 

compiled with certain compiler flags. If multithreaded support is not desired, then the files can be 

compiled like the other MEX files in the following way: 

  

Otherwise, flags need to be passed to the compiler. The required flags are shown in the table below: 

OS/Compiler Flags 

Windows with Visual 
Studio 

COMPFLAGS="$COMPFLAGS /openmp /DNCORR_OPENMP" 

Linux with GCC 

Before R2015a: 
CXXFLAGS="\$CXXFLAGS -fopenmp -DNCORR_OPENMP" CXXLIBS="\$CXXLIBS -
lgomp" 
 
R2015a+ (remove the backslash): 
CXXFLAGS="$CXXFLAGS -fopenmp -DNCORR_OPENMP" CXXLIBS="$CXXLIBS -
lgomp" 

 

An example compilation for these files with the appropriate flags is shown below for a system with 

Windows and Visual studio: 
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The important thing to note here is to make sure you use the correct name and format for the compiler 

flags, which depend on both the operating system and the compiler. If compilation still fails or more 

assistance is needed then please email me at jblaber3@gatech.edu and include the entire error message 

as a screen shot. 

At this point, all the MEX files should be compiled. The next step is to create a file called 

"ncorr_installinfo.txt" and then fill it with the following: 

  

The first number represents whether or not OpenMP support exists, and should be either 0 or 1 (0 = no 

OpenMP support; 1 = OpenMP support). The second number represents how many threads you want, 

and needs to be greater than or equal to 1. For example, the combination can be “0,1” for single 

threading, or “1,4” as shown above for multithreading with four threads. 

NOTE: Make sure to separate the numbers by a comma; the format should be: "#,#".  

After the above is complete, type "handles_ncorr = ncorr" into the MATLAB terminal which should bring 

the Ncorr GUI up. If the main GUI appears directly, then the installation should be complete.  

If you forgot to compile a file or forgot to set up the ncorr_installinfo.txt file, then the following will 

appear: 

 

If this appears, then go back over this section and make sure you did not forget to compile a file. 

If the installation went correctly, then as a double check, make sure the options you specified in the 

"ncorr_installinfo.txt" file were loaded correctly by typing "handles_ncorr" in the MATLAB terminal to 

view its properties and compare them with the values you provided in the ncorr_installinfo.txt file: 

mailto:jblaber3@gatech.edu
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2.1 – Program Flow 

For the general DIC section, I am using the “plate hole” sample from SEM’s DIC challenge. The formatted 

images, along with a ROI, are available off the Ncorr website if the user would like to follow along: 

 http://ncorr.com/download/sample12.zip 

At this point, it is assumed Ncorr has been successfully compiled and installed on the user's computer. 

The work flow of Ncorr is as follows: 

1. Set Reference Image 

2. Set Current Image(s) 

3. Set Region of Interest (ROI) 

 Dependencies: Requires reference image or current image(s) to be set first 

4. Set DIC Parameters 

 Dependencies: Requires reference image, current image(s), and ROI to be set first 

5. DIC Analysis 

 Dependencies: Requires DIC parameters to be set first 

6. Format Displacements 

 Dependencies: Requires DIC Analysis to be run first 

7. Calculate Strains 

 Dependencies: Requires displacements to be formatted first.  

Any of these steps can be altered at any stage, so long as the dependencies have been met. The state of 

the program is visible at the top left corner of the main Ncorr GUI as shown below: 

  

This lets the user know which stage they are currently on and which should come next. The state is listed 

in sequential order for convenience. In the example above, the state lets the user know that the 

reference image, current image, and ROI are loaded and that setting the DIC parameters needs to 

proceed next.
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2.2 - Setting the Reference Image 

There are two ways to set the reference image. The first way is to use the Ncorr GUI by going to File > 

Load Reference Image which results in the following:  

   

NOTE: The reference image means the initial or first image you take of the sample, before any deformation occurs.  

The other way to load a reference image is to do it through the MATLAB terminal. You can set the 

reference image by typing "handles_ncorr.set_ref(data)," where "data" is a 2D matrix (of type double, 

uint16, or uint8) containing image grayscale values, as shown below: 

  

This feature is provided because sometimes the reference image is obtained through a series of images 

which are averaged together or processed in some way. If this is the case, the reference image will be 

stored as an array in the base workspace, and it's much more convenient to load it directly than to save 

it as an image, which can also lead to loss of data through image compression or binning of gray scale 

values. 

Lastly, when the reference image is loaded it should appear as shown below: 
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2.3 - Setting the Current Image(s) 

First of all, one of the main differences between setting the current image(s) vs the reference image is 

that more than one image may be loaded for the current (deformed) configuration. Because of this, the 

program needs a way to order the current image(s) if more than one is loaded. To accomplish this, the 

images must have the name format shown below: 

name_#.ext 

Where "name" is the name of the image set, "#" is a number associated with the image, and "ext" is the 

image extension, which must either be .jpg, .tif, .png, or .bmp (an example would be “sample_15.png”). 

Note that this naming convention is only required if more than one current image is loaded through the 

GUI. 

Setting the current image(s) through the GUI also differs from the reference image, in that there are two 

different loading schemes, “Load All” and “Load Lazy,” which are shown by going to File > Load Current 

Image(s). 

 

“Load all” will store all the images into the workspace. If you are analyzing a large number of images, 

this will be problematic since it may result in running out of RAM space. However, when using lazy 

loading, only the name and path of the images are stored; the images are loaded based on their stored 

location “on demand.” This means that, when doing analysis in Ncorr using lazy loaded images, the user 

must make sure not to move the images into a different directory or alter them. Furthermore, since they 

are loaded on demand and then discarded afterward, this means some of the analyses may proceed a 

little slower. But, from my experience, the difference is not that noticeable. When in doubt, use lazy 

loading. 

When loading through the GUI (for both “load all” and “lazy load”), the following window should 

appear: 
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NOTE: Take note of the naming convention above. All of the current images follow the "name_#.ext" format, where name = 

"ohtcfrp" and ext = "tif".  

Simply drag and select all the current images you want to process. For this example, the images with a 

post-fix of “01” to “11” are selected). 

Similar to the reference image, there is also an option to set the current image(s) directly through the 

Ncorr handle. To do this, you can type "handles_ncorr.set_cur(data)" through the MATLAB terminal, as 

shown below: 

  

In the figure above, only a single current image is loaded, so it exists as a grayscale array of type double, 

uint16, or uint8. To load more than one image, each current image gray scale array must be stored 

together in a cell array. Furthermore, the ordering specified in the cell array is the order that Ncorr uses 

to sort the images. 

After the current images are uploaded, there are buttons on the bottom right of the Ncorr GUI which 

become enabled and allow you to scroll through the images as shown below: 
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The current images should be ordered properly according to their number, and the last image in the 

sequence will appear initially by default. It’s a good check to scroll through them to ensure the order is 

correct.
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2.4 - Setting the Region of Interest 

There are two ways to set the region of interest (ROI): through the GUI or through the MATLAB terminal. 

The most important thing to note here is that the ROI should be an array of the same size as the 

reference image or current image (this depends on which type of analysis is done, which is explained in 

greater detail in later sections. For this example, the ROI is set with respect to the reference image). 

Furthermore, white regions represent the ROI, and black regions are outside the ROI. It is also 

recommended to leave a black border near the edges of the image, although the ROI used in this 

example doesn’t, in order to illustrate a couple points. 

  

Sample ROI 

Load ROI: The first way to set the ROI is to load it from an image by going to: Region of Interest > Set 

Reference ROI and then pressing the Load ROI button. This is the recommended way to set a ROI 

because you can use a program like Photoshop to accurately trace an outline of the sample in order to 

obtain the best ROI. The only problem with this method is that it can be tedious. Anyway, a GUI should 

appear as shown below: 

  

For the example used in this user guide, the ROI was set using this method. 
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Draw ROI: The second way to set the ROI is to draw the ROI directly in MATLAB by using Region of 

Interest > Set Reference ROI and then pressing the Draw ROI button. This is the preferred method for 

preliminary analysis because it can be done quickly. An example ROI is shown below and was 

constructed using "+ Poly" followed by "- Ellipse," where the "+" prefix indicates adding portions to the 

ROI; "-" subtracts regions: 

  

NOTE: The green shapes represent regions which add to the ROI, red shapes represent regions that subtract from the ROI, and 

blue shapes represent regions which are active (i.e clicked on) 

To obtain better precision when drawing ROIs, you can zoom and pan the view. Zooming can be enabled 

by clicking the zoom button once and disabled by clicking it again (or by clicking a different button, such 

as adding a region or pressing the pan button). An example is shown below: 

  

It is also possible to delete specific shapes by right clicking them and selecting "Delete," as shown below: 
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MATLAB Terminal: Once again, similar to loading the reference and current image through the MATLAB 

terminal, typing "handles_ncorr.set_roi_ref(data)" will set the ROI. Note that data must be of type 

logical and be the same size as the reference image. An example is shown below: 
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2.5 – Setting DIC Parameters 

The DIC parameters can be set by going to Analysis > Set DIC Parameters. The main DIC algorithm used 

in Ncorr is based off of Bing Pan's RG-DIC framework. RG-DIC is highly robust and computationally 

efficient as well. More details can be found in Bing Pan's paper on RG-DIC as well as the "DIC 

Algorithms" section on the ncorr.com website. 

A GUI should appear as shown below: 

  

NOTE: A subset spacing of 3 is shown above to better illustrate the spaced points on the zoomed in subset, but for the example 

analyzed in this section, a subset spacing of 1 was used to obtain higher resolution results. 

There are several key components to this GUI. The first is obviously the menus on the left, but it is also 

important to note that the subset preview is interactive. A green impoint (highlighted by a red square) is 

placed in the axes labeled "Subset Location." This point is draggable and is the center point of the subset 

shown on the right. The subset on the right gives an idea of what the subset spacing (space between the 

two dots within the red squares) and subsets will appear like. It's important to note that these 

highlighted points are where the subset locations will be, and not part of the speckle pattern in the 

uploaded image.  

Subset Options: These options are the main components of the DIC analysis. They dictate how large the 

subsets should be and the spacing between them. The spacing component is purely for reducing 

computational load. There are defaults for both options, but it's up to the user to select the most 

optimal settings. The most important option to get correct is the subset radius. There is an abundance of 

literature available for the selection of the subset size, as well as the effects of subset size on DIC 
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analysis, but most of the conclusions from these studies are often based on heuristics and empirical 

observations. Overall, the main idea is to select the smallest subset possible which does not result in 

noisy displacement data (as larger subsets tend to have a smoothing effect). Some iteration may be 

required to get this option right. 

Iterative Solver Options: The iterative solver used in the DIC analysis is the inverse compositional image 

alignment technique (A good paper on this topic is Baker et al and Bing Pan's paper on his adaptation for 

this technique for DIC). The exit criteria for this iterative solver are the norm of the difference vector as 

well as the number of iterations. The default options for the iterative solver are actually pretty strict, but 

they can be relaxed if faster analysis is desired by reducing the iteration number cutoff as well as 

increasing the norm of the difference vector cutoff.  

Multithreading Options: Ncorr has the ability to use multithreading to speed up the computation 

process. The default number of threads is the number of cores specified by the user during installation 

(section 1), although I have left the option to alter this number again through this GUI.  

High Strain Analysis: In the example used specifically in this section, high strain analysis is not required. 

However, the high strain analysis works by updating the reference image (as well as the ROI) and then 

“adding” displacement fields together. If you enable this parameter, there are two different ways the 

updating can proceed: In the case of the “seed propagation” option, the reference image will be 

updated based on the correlation coefficient and the number of iterations to convergence of the seeds. 

If these exceed certain heuristic thresholds, then the reference image will be updated. For the “leap 

frog” approach, the user can manually select how many images to use before updating the reference 

image. For both options, if the “automatic propagation” checkbox is enabled, then the seeds will be 

placed automatically for the updated reference image based on their previous displacements and the 

DIC analysis will proceed automatically until completion. If this is unchecked, then the user will have to 

replace the seeds manually every time the reference image is updated.  

Discontinuous Analysis: For this example, discontinuous displacements are not anticipated, so this 

feature isn’t used. Regardless, subset truncation is a feature that prevents subsets from wrapping 

around a crack tip which can cause distortions near the cracktip. This feature is elaborated on in the 

discontinuous displacements section.  
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2.6 – DIC Analysis 

The actual DIC analysis is performed by going to Analysis > Perform DIC Analysis in the main Ncorr GUI. 

The first step is to select a region (defined as a contiguous region) as shown below. 

Select Region 

This step involves selecting a contiguous region to process. In this example, only one region will be 

processed (because only one is present), but it is possible to have more than one region when forming 

the ROI. Press the "Select Region" button and place the impoint anywhere within the region to select it 

for processing, as shown below: 

   

Seed Placement 

The seed placement process serves three purposes: 1) it provides initial guesses for the RG-DIC analysis, 

2) it partitions the ROI so that each partition can be calculated in parallel if multithreading is enabled, 

and 3) in the case of the high strain step analysis (with seed propagation selected), it updates the 

reference image based on certain heuristic thresholds for the iterations to convergence and correlation 

coefficients of the seeds. Thus, the placement of the seeds is very important. To satisfy the first 

requirement, seeds must be placed such that they do not go outside the field of view (FOV) during 

deformation. For the second requirement, seeds should be placed such that the ROI is partitioned 

evenly. For the third requirement, seeds should be placed in regions of high deformation such that the 

reference image updates appropriately. The first two points are addressed here, while the third is 

addressed in the high strain section. 
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An example of inappropriate vs appropriate seed placements for the example reference image is shown 

below (note that this is only applicable if multithreading is enabled – if it’s disabled only one seed can be 

placed): 

 

These seed positions are not 
preferable because the regions aren't 
evenly sized and they aren't nice 
"full" shapes. 

 

These seed placements are more 
preferable because the regions are 
evenly sized and have nice "full" 
shapes. 

Seed Preview 

After the seed placement is done, a preview will appear. It's important that the user checks the seeds 

through this GUI because it's possible that the seeds can be processed incorrectly. The main reasons for 

seeds being incorrect can be either through a failure in convergence (this rarely happens as long as there 

are no large rotations or deformations present), or if the seeds travel outside the current image as the 

sample deforms. An example for proper seed preview is shown below: 
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Notice that all the seed locations in the reference image seem to match appropriately with the locations 

in the current image. Furthermore, the reference subset and transformed current subset look very 

similar. Lastly, the number of iterations to convergence was way below the cutoff, and the relatively low 

correlation coefficient both imply a good and correct seed placement. 

Debugging 

As mentioned before, it's possible for seeds to travel outside the image during deformation which 

results in improper seed calculations. Because this is actually a somewhat common occurrence 

(especially when the whole sample cannot be imaged within the field of view), an example is given 

below with tips on how to catch this mistake and correct it: 
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Suppose for instance that the seeds are placed as shown above. It turns out that the sample in the 

picture undergoes some translation upwards as it deforms. The seed highlighted in red actually goes 

"out of the picture" in some of the current images. In this case, an error message will generally display 

that notifies the user of a seed point with a high correlation coefficient value. This is an important 

indicator of a seed that has possibly been processed incorrectly. You can confirm this by viewing the 

seed preview below: 
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All of the highlighted things in the figure above indicate potential problems. In the location pictures, it 

becomes evident that the location of the top seed in the current image is completely off, whereas the 

other three seeds are correct. Visual inspection of the enlarged reference and current subsets also show 

that they look very different. Lastly, the maximum number of iterations (50 for this case) was used 

before convergence was reached; this is typically another good indicator of an improperly calculated 

seed. The solution here is to move the seed to a lower location or potentially redraw the ROI to exclude 

the top region. 

Anyway, after the seeds have been properly placed and calculated, the RG-DIC analysis will run until 

completion. The next step in the process is to format the displacements.
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2.7 - Formatting Displacements 

The displacement formatting begins by going to Analysis > Format Displacements in the main Ncorr GUI. 

The resulting GUI for formatting the displacements should look like this: 

  

Units Options: These options are used to convert the displacements from pixels to real units. You can 

either input the value directly if you know it, or you can click the “Get Unit Conversion” button in order 

to load an image with a known dimension. Most tests are done with a regular camera on a sample, so 

the easiest way to take advantage of this feature is to, after the experiment in complete, replace the 

sample with a ruler so you can measure what the unit conversion is. An example of the GUI is shown 

below: 

 

For this sample set, I’m actually not sure what the unit to pixel conversion is, so I’ve left the units as 

pixels. But, just for the sake of an example, assume that the undeformed sample is 10 mm wide. You can 

apply this knowledge by loading the reference image through “Load Calibration Image” and then setting 

a line across the sample with “Set Line.” Lastly, the units (mm) and the number of units (10) can be set in 

their appropriate boxes. Assuming the sample is 10mm wide, this will apply the correct conversion to 

convert the displacements from pixels to mm (determined to be 0.031791 mm/pixel in this case). It’s 

important to note that this assumes pixels are square, which is usually the case. 
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Formatting Options: These options help filter out “bad” data points. In the example done in this section, 

some of the points in the ROI travel outside the FOV. These points can be filtered out by reducing the 

correlation coefficient cutoff. In conjunction with this, the locations of the min and max displacement 

values can assist in this analysis, as “bad” data points generally have very high or very low values. A good 

cutoff for the example done in this guide is to set the correlation coefficient cutoff to 0.02 (which was 

applied to all images), as shown below: 

  

Note that the preview above was zoomed in using the zoom/pan options. The filtering out of bad data 

points is shown below: 

 

Lens Distortion Options: This is an option to correct for errors involving radial lens distortion. The 

distortion correction follows from eq.6 in “Systematic errors in two-dimensional digital image 

correlation due to lens distortion.” The correction is applied assuming the distortion center is at the 

center of the image; this might not always be true but is usually a reasonable assumption. If no 

calibration tests have been done or you’re unsure what the lens coefficient is, then just leave it as 0. 

As of now, a lens coefficient can only be applied. Bing Pan provides a method for determining the lens 

coefficient, but I have yet to integrate this into Ncorr. The process basically requires DIC analysis to be 

run on images taken during rigid body translation tests and then performing a simple least squares 

analysis to solve for the lens distortion parameter. In future revisions of the program, I may implement 

this feature.
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2.8 - Strain Analysis 

The strain analysis begins by going to Analysis > Calculate Strains in the main Ncorr GUI. The strains are 

calculated from the displacement data by using a least squares plane fit to a local group of data points 

(in this case a contiguous circle) which is based on Bing Pan's work on strain calculation. The 

displacement gradients are then found from the plane parameters; these gradients are used to calculate 

Green-Lagrangian and Eulerian-Almansi strains. A more detailed description is given in the "DIC 

Algorithms" section on the ncorr.com website. 

Strain Options: The only parameter you can vary here is the strain radius. This is the radius of a circle 

which selects a group of points to fit a plane to. A preview is provided so the user can visualize the plane 

fitting. The selection of the ideal strain radius is similar to the selection of the ideal subset radius, in that 

the smallest radius is desired which does not result in noisy strain data. The default radius is set to 15, 

but it is up to the user to select the most optimal radius for their data.  

  

The impoint highlighted in the red box is draggable, and updates the plane fit shown on the right side. 

The recommended way to use this analysis is to drag the point to areas of high deformation and view if 

the curve fit is still reasonable. An example of this is shown below:  
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Visually, it appears the strain 
radius is too large for this 
displacement field.  

 

Reducing the strain radius to a 
value of 5 appears to give a 
much better fit for the plane. 
In this example, this value is 
used to generate the strain 
field. 

Lastly, the strain radius should be selected with regards to the last current image (which is shown first 

by default), as this image will most likely have the highest displacement gradients. 

View Options: These dropdown menus allow you to switch from the U-displacements to the V-

displacements and vice versa. They also allow you to switch from the Lagrangian to the Eulerian 

perspective. By default, both Green-Lagrangian and Eulerian-Almansi strains are calculated. 

Discontinuous Analysis: Just like for DIC, there is also an option to utilize subset truncation for the strain 

calculations.  This feature prevents subsets from wrapping around a crack tip which can cause 

distortions near the cracktip. This feature is elaborated on in the discontinuous displacements section.  
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2.9 - Plotting  

At this point, it is assumed either the displacements have been formatted or the strains have been 

calculated. Plotting can be achieved by going to Plot > View Displacement Plots or Plot > View Strain 

Plots in the main Ncorr GUI. This is the last step of the analysis. An example of the plots used in the 

examples in this user guide is shown below: 

  

NOTE: From my experiences working with the plotting tool on different operating systems and versions of MATLAB, there 

appear to be inconsistencies between versions with regards to the stacking order of objects (i.e. sometimes the scalebar/axes 

appear behind the data if a contour plot is present), but I tried to optimize it for Windows on version R2012a. If the axes, 

scalebar, and contour plot are disabled, the plot appears to work fine on all versions of MATLAB I've tested Ncorr on. 

There are a couple basic features available, the first one being that the plot windows are resizable. They 

are the only GUI windows in Ncorr that are resizable at the time of writing this manual. Furthermore, if 

you hover your cursor over the data, a data cursor appears that informs you of the displacement or 

strain data at that location, as shown below: 

  

The “x-pos” and “y-pos” positions are the integer locations of the cursor with respect to the raw data 

array. This was done for convenience so the user can access the value in the array very easily. For 

example, in the figure above, the last V displacement plot is shown. You can access this point directly 

using: 

handles_ncorr.data_dic.displacements(11).plot_v_ref_formatted(317,163) 
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The resulting output of the terminal will be -7.5719, which matches the V displacement shown. The 

index for the plot is the same that is shown between the “<” and “>” buttons on the bottom right of the 

plotting GUI. Note that these x and y positions are not the real positions of the x and y coordinates 

(hence why no units are provided). They are the position of the data cursor within the raw data array 

generated by Ncorr, which is a scaled multiple (the scaling depends on the subset spacing parameter) of 

the reference (or current - if eulerian analysis is done) image. For more information on the “data_dic” 

structure, please consult section 2.10. 

Local Plot Options: These options are pretty self-explanatory. The only thing to note here is that these 

options only affect the plot that is being adjusted (as opposed to other options which affect all open 

plots). Furthermore, the transparency option is disabled when the contour plot is enabled. This is 

because transparency does not work well with contour plots. In general, the contour plot does not work 

that well with strain plots because strain plots are generally noisier than displacement plots which 

results in jagged contours. 

View Options: Once again, these options are pretty self-explanatory. These allow you to switch between 

Lagrangian and Eulerian perspectives. For strains, these will switch between Green-Lagrangian strains 

and Eulerian-Almansi finite strains tensors. This option will affect all open data plots. 

Scalebar Options: This affects the visibility and length of the scalebar (displayed in the bottom-left of 

the plot). This option will affect all open data plots. 

Axes Options: This option affects the visibility of the axes (displayed in the top-left of the plot). This 

option will affect all open data plots. 

Saving the Figure: A figure can be saved by going to File > Save Image > Save Image Without Info, File > 

Save Image > Save Image With Info, or File > Save Gif within the plot window. This will allow you to save 

nice figures for publications, websites, or any other purpose. In this guide, I will focus on saving images, 

as the animated gif option is more useful for high strain calculation (which is discussed in the high strain 

section). After selecting the save image option, a menu with a preview should appear as so: 
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This will allow you to resize the image if you desire. Please note that if a large spacing parameter is used, 

the image may look blurry if you upsize it because the image and data plot must be the same size when 

plotting in MATLAB. The best solution for this would be to rerun the analysis with a smaller subset 

spacing parameter. Also, I recommend saving the figure as a “.tif” because MATLAB appears to 

compress other image formats which may lead to a loss of quality. 
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2.10 - Directly Obtaining and Altering DIC Data 

The DIC data can be accessed directly through "handles_ncorr.” For example, by typing 

"handles_ncorr.data_dic" into the MATLAB terminal, you can access the data structure that contains the 

strain and displacement data as shown below: 

  

Notice that both "dispinfo" and "straininfo" only have one element. This is because they contain 

parameters which are consistent over the entire analysis. On the other hand, both "displacements" and 

"strains" have eleven elements. This is because these fields contain information specific to each current 

image. For the example used in this section, we have uploaded eleven current images, which correspond 

to eleven elements seen above.  

The size of the displacement/strain plots themselves depend on the image and the subset spacing 

utilized. For the Lagrangian perspective, the size of the displacement/strain plots will be: 

  size(img_ref(1:1+subsetspacing:end,1:1+subsetspacing:end)) 

where "img_ref" is the 2D reference image grayscale array and "subsetspacing" is the subset spacing 

parameter (where a value of 0 results in no reduction). For example, if a reference image of size 

400x1040 and a subset spacing of 1 is used (as is done in the example in this manual), then the 

Lagrangian displacement/strain plots will be 200x520.  

The displacements with respect to the reference configuration (Lagrangian) are stored in the plots with 

the "_ref" suffix. The "_cur" suffix is used for displacements with respect to the current configuration 

(Eulerian).  

Each field of "handles_ncorr.data_dic" will be explained in a table format as shown below: 

handles_ncorr.data_dic.displacements 

Field Explanation 
plot_u_dic Plot containing U displacement data WRT the updated reference image (based on imgcorr) 

after DIC analysis. This plot is used for computational purposes. 

plot_v_dic Plot containing V displacement data WRT the updated reference image (based on imgcorr) 
after DIC analysis. This plot is used for computational purposes. 

plot_corrcoef_dic Plot containing correlation coefficient data WRT the updated reference image (based on 
imgcorr) after DIC analysis. 

roi_dic ROI corresponding to valid displacement data WRT the updated reference image (based 
on imgcorr) after DIC analysis. 
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plot_u_ref_formatted Plot containing U displacement data WRT the reference configuration after it has been 
formatted. This plot is displayed in the plot figure. 

plot_v_ref_formatted Plot containing V displacement data WRT the reference configuration after it has been 
formatted. This plot is displayed in the plot figure. 

roi_ref_formatted ROI corresponding to formatted displacement data WRT the reference configuration 

plot_u_cur_formatted Plot containing U displacement data WRT the current configuration after it has been 
formatted. This plot is displayed in the plot figure. 

plot_v_cur_formatted Plot containing V displacement data WRT the reference configuration after it has been 
formatted. This plot is displayed in the plot figure. 

roi_cur_formatted ROI corresponding to formatted displacement data WRT the current configuration 

 

handles_ncorr.data_dic.dispinfo 

Field Explanation 
type String representing whether “regular” or “backward” analysis was done; this value can 

either be 'regular' or 'backward' 
radius Integer representing the subset radius 

spacing Integer representing the subset spacing 

cutoff_diffnorm Number representing the cutoff for the norm of the difference vector in the inverse 
compositional method 

cutoff_iteration Integer representing the cutoff for the maximum number of iterations allowed for the 
inverse compositional method 

total_threads Integer representing the total number of threads specified during the RG-DIC parameter 
specification stage (can be different than the number of cores specified during installation) 

stepanalysis Structure containing data for the step analysis. The fields “enabled,” ”type,” “auto,” and 
“step” represent if the step analysis is enabled, whether seed propagation or leapfrog is 
used, whether seeds will automatically get placed at each step, and the step parameter for 
the leapfrog analysis, respectively. 

subsettrunc Logical parameter specifying if subset truncation was used for the RG-DIC analysis. 

imgcorr Structure containing the image correspondences for the step analysis. For each element, 
there is an “idx_ref” and “idx_cur.” The idx’s are zero based and assume the reference and 
current images are concatenated. idx_ref is the index for the updated reference image 
whereas idx_cur is the index of the last current image WRT this reference image. 

pixtounits Number representing the conversion between pixels to real units. In the form of 
units/pixels. 

units String containing the units 

cutoff_corrcoef Number representing the minimum correlation coefficient value allowable for 
displacement datapoints corresponding to a dataplot. 

lenscoef Number representing the radial lens distortion coefficient 

 

handles_ncorr.data_dic.strains 

Field Explanation 
plot_exx_ref_formatted Plot containing the Exx Green-Lagrangian strains (WRT the reference image). This plot is 

displayed in the plot figure. 
plot_exy_ref_formatted Plot containing the Exy Green-Lagrangian strains (WRT the reference image). This plot is 

displayed in the plot figure. 

plot_eyy_ref_formatted Plot containing the Eyy Green-Lagrangian strains (WRT the reference image). This plot is 
displayed in the plot figure. 

roi_ref_formatted ROI containing information for valid points after strain calculation (It's possible for some 
points to be removed during strain calculation for regions that do not have enough points 
to form a plane fit) 
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plot_exx_cur_formatted Plot containing the Exx Eulerian-Almansi strains (WRT the current image). This plot is 
displayed in the plot figure. 

plot_exy_cur_formatted Plot containing the Exy Eulerian-Almansi strains (WRT the current image). This plot is 
displayed in the plot figure. 

plot_eyy_cur_formatted Plot containing the Eyy Eulerian-Almansi strains (WRT the current image). This plot is 
displayed in the plot figure. 

roi_cur_formatted ROI containing information for valid points after strain calculation (It's possible for some 
points to be removed during strain calculation for regions that do not have enough points 
to form a plane fit) 

 

handles_ncorr.data_dic.straininfo 

Field Explanation 
radius Integer representing the strain radius 

subsettrunc Logical parameter specifying if subset truncation was used for the strain analysis. 

 

Lastly, any information that the user wants to alter should be copied first to another variable in the main 

workspace. By default, the properties of Ncorr are set to "(SetAccess = private)" to prevent inadvertent 

alteration of data. If the user wants to alter the data directly, then the user can go into the ncorr.m 

source code and change "(SetAccess = private)" to "(Access = public)" to alter these properties directly 

as shown below: 

  

It may be possible to crash Ncorr by setting inconsistent data and thus caution is advised if going this 

route.
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3.1 – High Strain DIC Analysis 

For this section, it is assumed the program has already been installed and the user has already read the 

General DIC section. The images used for this section (the “weld” sample from SEM’s DIC challenge) are 

available off the Ncorr website if the user would like to follow along: 

http://ncorr.com/download/sample13.zip 

Start by setting the reference image to the first image (post fix of “000”) of the set. Next, load the 

current images by using “Lazy Load” (or potentially “Load All” if your computer has a lot of RAM) and 

selecting all the images from postfix of “020” until the postfix of “910” (note that at “915” the sample 

has failed- so omit this picture) as the current images. Lastly, set the reference ROI to the ROI provided 

in the image set (named “roi.tif”). If successful, the GUI should appear as below: 

 

Now, if the user simply proceeds as is done in the general DIC section, he/she will find that the seeds for 

the latter images will always be incorrect for the latter images. This is because this sample undergoes 

very high deformation. The underlying problem here is that the pattern between the reference image 

and the last current image changes so much that the matching algorithm no longer works. This type of 

sample requires the reference image to be updated. To account for this, the high strain step analysis 

needs to be enabled when setting the DIC parameters; this is discussed in the next paragraph. 

For high strain DIC, it’s recommended to set the type of step analysis to “seed propagation” with the 

“automatic propagation” checkbox enabled, as shown below: 
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There are a couple things to note here. First of all, there are a large number of images involved in this 

analysis, so performance issues will be a concern. To increase the speed of the analysis, I’ve elected to 

increase the subset spacing to 6. Furthermore, the norm of the difference vector has been increased to 

10-3 and the iteration cutoff has been reduced to 20. This will reduce the number of material points to 

analyze and also make the conditions on the iterative solver more relaxed. The effects of doing these 

three things will be a lowered resolution in the acquired displacement field, and a slightly reduced 

accuracy as well. If time permits, then the spacing, norm of difference vector, and iteration cutoff can be 

left to their default values. 

In addition, the high strain analysis has been set with the seed propagation and automatic propagation 

parameters enabled. This allows the program to automatically update the reference image, as well as to 

automatically place seeds so the analysis can proceed in an automated fashion until completion. If 

“leapfrog” is selected, then the reference image will update according to whatever step number is 

provided. Lastly, if auto propagation is disabled, then the user will have to manually place the seeds 

every time the reference image is updated. This can be quite tedious, but also ensures the seeds are 

correct, so this option should only be disabled if you want to ensure completely that the seed 

placements are correct. 

The next crucial step is the seed placements. Recall from the general DIC analysis that there are two 

main considerations for seed placement for the regular DIC analysis. First of all, they need to be placed 

on a material point that does not exit the FOV as the sample deforms. Next, they need to be placed such 

that the regions are more or less evenly portioned so they can be calculated nicely in parallel. For high 

strain analysis with seed propagation, there’s another consideration: since the reference image is 
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updated based on the correlation coefficient and number of iterations to convergence of the seed 

points, they need to be placed in a region of high deformation, so that the reference image updates 

correctly. If you examine the last current image in the example set, you’ll see that the region of highest 

deformation is near the region circled below: 

    

Basically, from inspection of the last current image (shown on the left), you can assume the highest 

deformation occurs approximately in the region encircled by the red ellipse (where the crack initiates). It 

would be ideal to place the seed points on the reference image corresponding to this region so that the 

reference image updates properly. With this in mind, the seeds (assuming multithreading is enabled 

with two threads) are placed as so: 
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These seed locations (shown in the red boxes) satisfy the three requirements explained previously. 

Clicking finish yields the following seed preview screen: 

 

The most important thing to note here is that the last image seeded is not the last image of the series. 

The image with postfix “180” was determined to be the last properly seeded image of the series (Note 

that this can vary; it’s possible the image can be a couple before or after this one depending on the seed 

placement). This image will serve as the updated reference image until it is updated again. Click finish to 

proceed with the analysis. It should continue until completion.  

Before continuing, I’d like to explain what exactly is going on “under the hood.” Basically, every time the 

reference image gets updated, the seeds are automatically “propagated” and placed as the analysis 

proceeds. Additionally, the ROI is also updated based on the displacements on the boundary of the ROI. 

For this example, the updated thread diagrams with seed placements are shown below: 
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For this particular example, there were four updates. The ROIs and seed positions (shown as red circles) 

are automatically updated and then subsequently processed. The corresponding “imgcorr” structures 

are also superimposed as an example for how this structure works. 

From here, the only problem is that the displacement fields are now going to be with respect to the 

updated reference images. The next step is to somehow “add” them in order to bring them all back to 

the Lagrangian perspective (i.e with respect to the original reference image). This step is taken care of 

when the displacements are formatted. The formatting displacements GUI should look similar to the one 

shown below: 

 

Note that a crack develops in the sample on the right side near the middle of the sample. This means 

points near this crack are poorly analyzed, so they should be removed. Setting a correlation coefficient 

cutoff of ~1.0 yields good results: 
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One last thing to point out is that the reference name shown above (near the bottom left) refers to the 

updated reference image.  

The last step of the analysis is to calculate the strains. A strain radius of 7 appears to give good results as 

shown below: 

 

In terms of plotting, the only distinction to really make between high strain and regular DIC analysis is 

that the user might want to consider saving an animated gif instead of regular pictures since so many 

data plots are available. In this particular case, the Eulerian perspective makes for especially good 

animations. Furthermore, it’s usually appropriate to set the same upperbound and lowerbounds for 

strain in all the plots. 
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First, a plot for Eyy is shown below: 

  

In order to set all the bounds for the strains the same, it’s necessary to set them such that the bounds 

accommodate all plots. For this example, the lowerbound must be set near zero as shown below: 
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If this lowerbound is set any higher, it might result in an earlier plot becoming completely saturated. If 

you do this, an error message will appear which informs you what the bounds must be. Furthermore, I 

tend to add or subtract 0.0005 from the bounds to guarantee the tick marks appear on the top and 

bottom of the colorbar as well, as shown above. Anyway, after hitting “applying to all”, select File > Save 

GIF which will bring up the following GUI: 

 

Notice that, in addition to the size, you can also modify the time delay between animation frames. From 

my experience, a time delay of 0.04 (25 fps) seems to work well for this data set, but the user can always 

opt to increase it in order to slow the animation down and vice-versa.  
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4.1 – Discontinuous Displacements DIC Analysis 

For this section, it is assumed the program has already been installed and the user has already read the 

General DIC section. The images used for this section (called the “cracked sample”) are available off the 

Ncorr website if the user would like to follow along: 

http://ncorr.com/download/cracksample.zip 

For this analysis, images from my lab are going to be used. Furthermore, to demonstrate some of the 

features of Ncorr, they will be loaded through the Ncorr handle instead of the GUI. The images were 

taken from a high resolution CCD camera and are thus quite large. To account for this, I’ve decided to 

read them through a script and then downsize them before loading them into Ncorr. The script is 

included with the images but is also show below: 

%% Open Ncorr 
handles_ncorr = ncorr; 

  
%% Set Parameters 
% Load Ref 
ref = imread('ref.TIF'); 
ref = imresize(ref,0.5,'bicubic','Antialiasing',true); 

  
% Load Cur 
cur = imread('cur.TIF'); 
cur = imresize(cur,0.5,'bicubic','Antialiasing',true); 

  
% Load ROI 
roi = rgb2gray(imread('roi_half.TIF')); 
roi = roi > 5; 

  
% Set Data 
handles_ncorr.set_ref(ref); 
handles_ncorr.set_cur(cur); 
handles_ncorr.set_roi_cur(roi); 

 

The GUI should appear as so if everything went correctly: 
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The important thing to note is that the ROI was set with respect to the current image (i.e. it uses 

“handles_ncorr.set_roi_cur(data)”). This is the key point to how Ncorr handles discontinuous 

displacement fields. The idea is that the discontinuities are clearly visible in the current configuration. 

The general process is that the ROI and DIC analysis proceed with respect to the current configuration, 

and then an Eulerian to Lagrangian algorithm converts the displacements back to the reference 

configuration. The ROI was traced around the crack in Photoshop; a close up of the ROI superimposed 

on the current image is shown below: 

 

The DIC parameters were then set as shown below: 
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The one thing to note in particular is that subset truncation is enabled. This prevents wrap around of 

subsets around the crack tip. This is demonstrated below: 

 

This is useful because the shape functions are linear, whereas the deformation near the crack tip is 

highly nonlinear. This helps prevent some distortions in the displacement fields which will be shown at 

the end of this section. Anyway, the seeds (note that if multithreading is disabled, only one seed can be 

placed) are placed as so: 

  

After the analysis is complete, the displacement formatting does not need any special considerations. 

Just accept the defaults as shown below: 
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For the strain analysis, make sure to also utilize subset truncation: 

 

After everything is complete, the displacement and strain plots should appear as shown below (only the 

V displacement and Eyy strains are shown below since the sample is loaded in the y direction): 
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I’ve taken the liberty of also performing the same analysis without subset truncation. Comparisons are 

shown below between the zoomed-in V displacement fields (top row) and Eyy Lagrangian strain fields 

(bottom row) near the crack tip, which demonstrate the benefits of using subset truncation in mitigating 

distortions near the cracktip: 
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5.1 – Debugging MEX Files 

This section is available for those that would like to debug the actual MEX files called by Ncorr. For 

example, if you are interested in examining the hessian matrix during the inverse composition Gauss 

Newton iterations, it would require you to debug the ncorr_alg_rgdic.cpp file. In this example, the Visual 

C++ 2008 IDE is used to debug this file.  

The first step is to recompile the MEX file with the “-g” flag to enable debugging. For this example, we 

won’t be using multithreading since this making debugging easier. Type the following into the Matlab 

terminal: 

  

To ensure a debug version was successfully compiled, there should be a corresponding “.pdb” file in the 

directory: 

   

Next, open the .cpp file in Visual Studio and attach the debugger to MATLAB.exe: 
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Next, set a breakpoint within the IDE and run some analysis in Ncorr in order to invoke a function call to 

ncorr_alg_rgdic. In this example, we are placing a breakpoint right after the hessian has been calculated 

as shown below: 
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After the analysis is run, the process will stop at the break point. The next step is to open a watch for the 

variables in the current scope: 

 

This results in the following window: 
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This watch window will contain the current hessian for each thread (in this example, I have only used a 

single thread so there is only one hessian). Note that the hessian is a 6x6 matrix since there are 6 

parameters which can be adjusted (u, v, du/dx, du/dy, dv/dx, and dv/dy). The hessian is stored in a 36 

element vector using column major ordering, which is highlighted in the figure above. 

With this in mind, it’s now possible to debug and check values in the MEX files called by Ncorr. 

 


