
 Ncorr 
 

C++ Port Instruction Manual 
Version 1.0.0 

6/20/2015 

Justin Blaber (jblaber3@gatech.edu) 

 

Table of Contents 

1 - Installation 

 1.1 - Installation Requirements 

 1.2 - Dependent Libraries 

 1.3 - Ncorr Compilation 

 1.4 - Executable Compilation 

2 - User Guide 

 2.1 - Program Flow 

 2.2 - Saving Videos and Images 

 2.3 - Accessing Data Directly



Installation Requirements - 1.1 

1.1 - Installation Requirements 

Compiler Requirements:  

 Compiler must have C++11 support 

 Recommended compiler: g++ 4.8+ 

NOTE: Ncorr has only been tested on g++ 4.8. 

Build System: 

 Recommended: CMake 

NOTE: Ncorr includes CMakeLists.txt files for compilation using cmake (www.cmake.org/download). 

Library Requirements:  

 Required: OpenCV 

 Required: FFTW  

 Required: SuiteSparse  

 Required: LAPACK  

 Required: BLAS  

 Required: gfortran (note this is included with g++) 

NOTE: More information on these libraries is provided in section 1.2. 

Operating System Requirements: 

 Recommended: Linux 

NOTE: Ncorr was developed on Ubuntu 12.04LTS. It currently will not work on the free version of Visual Studio on Windows 

because Visual Studio 2013 does not support some features of C++11. 



Dependent Libraries - 1.2 

1.2 – Dependent Libraries 

Library: OpenCV  

Version: 3.0.0 

Link: http://opencv.org/downloads.html 

Specific Libraries: libopencv_core, libopencv_highgui, libopencv_imgcodecs, libopencv_imgproc, and 

libopencv_videoio  

Notes:  Primarily used for imread(), imshow(), and the VideoWriter class 

 

Library: FFTW 

Version: 3.3.4 

Link: http://www.fftw.org/download.html  

Specific Libraries: fftw3 

Notes:  Used for convolution, deconvolution, and cross correlation 

 

Library: SuiteSparse 

Version: 4.4.4 

Link: http://faculty.cse.tamu.edu/davis/suitesparse.html  

Specific Libraries: libspqr, libcholmod, libsuitesparseconfig, libamd, libcolamd 

Notes:  Uses sparse QR solver for the digital inpainting of 2D data; uses the same algorithm as inpaint_nans() 

from Matlab’s file exchange 

 

Library: LAPACK, BLAS, and libgfortran 

Link: http://www.netlib.org/lapack/ and http://www.netlib.org/blas/  

Notes:  For g++ libgfortran must be linked when using BLAS.

http://opencv.org/downloads.html
http://www.fftw.org/download.html
http://faculty.cse.tamu.edu/davis/suitesparse.html
http://www.netlib.org/lapack/
http://www.netlib.org/blas/


Ncorr Compilation - 1.3 

1.3 – Ncorr Compilation 

The compilation/installation of the Ncorr library is pretty easy using cmake. Start by navigating to the 

build directory. This guide assumes the files are downloaded and extracted to the desktop. Then call: 

 $ cmake . 

 $ make 

 $ sudo make install 

Make sure not to forget the “.” after cmake. These steps are shown in greater detail below: 



Executable Compilation – 1.4 
 

1.4 - Executable Compilation 

Compilation of an executable using the Ncorr library is a little more complicated. The library 

dependencies (section 1.2) need to be included when the executable is compiled. Before compiling an 

executable, make sure that the dependent libraries are not only compiled but installed. This will allow 

g++ and cmake to find the required headers and libraries automatically. For Ubuntu, these libraries 

should be in the /usr/local/lib and /usr/local/include directories as shown below: 

  

Note that libgfortran.a is typically in gcc’s installation directory. Locate the file on your system, and then 

copy it to the /usr/local/lib directory so that cmake can find this library automatically. You can also write 

your own Makefile and just link the libraries manually if you want as well. 

 

After you make sure all the proper libraries are installed and all the necessary header files are in 

/usr/local/include, you can compile the example in the /test directory by calling:  

 $ cmake . 

 $ make 

The output in the terminal is shown below:   



Executable Compilation – 1.4 
 

 

If all goes well, then the executable should be compiled and located in the bin folder. Navigate to the bin 

directory and run it by calling:  

 $ ./ncorr_test calculate 

The output in the terminal is shown below:   

 

This test executable requires a command line input of either “calculate” or “load”. “calculate” will 

calculate the displacement and strain fields, save the DIC/strain information as binary, and then save 

videos of the displacement and strains. After this information is calculated and saved, ncorr_test can be 

called again with “load” to save the videos using the saved data directly, instead of recalculating the 

plots. If the executable runs correctly, the Eyy Eulerian-Almansi strain video should look like: 

 



Program Flow - 2.1 
 

2.1 – Program Flow 

There are four main data structures used in Ncorr. They are: 

1. DIC_analysis_input 

2. DIC_analysis_output 

3. strain_analysis_input  

4. strain_analysis_output 

These data structures should not be altered directly. The *_inputs are either formed through their 

constructors or loaded from saved data. The *_outputs are either formed through interface functions or 

loaded from saved data. The overall program flow is shown in the figure below: 

 

The first step for performing DIC is to form a DIC_analysis_input: 

DIC_analysis_input(const std::vector<Image2D> &imgs, 

                   const ROI2D &roi, 

                   difference_type scalefactor,  

                   INTERP interp_type, 

                   SUBREGION subregion_type, 

                   difference_type r, 

                   difference_type num_threads, 

                   DIC_analysis_config DIC_config, 

                   bool debug); 

The inputs to this constructor are all the basic things needed to perform digital image correlation. The 

imgs input is a vector of Image2Ds that essentially hold the paths to image files so they can be loaded on 

demand. The first image is considered the reference image, and displacements are calculated with 

respect to this reference image. The roi input is a region of interest that’s formed with respect to the 

reference image. scalefactor determines how much the output Disp2Ds are scaled with respect to the 

reference image and is used to reduce computation time. A scalefactor of 1 means the output Disp2Ds 

are the same size as the reference image, a scalefactor of 2 means the output Disp2Ds are reduced by a 

factor of 2 in size, etc. The interp_type input specifies the type of interpolation used in the analysis. 



Program Flow - 2.1 
 

Currently cubic spline and biquintic b-spline interpolation are available for use. The subregion_type 

specifies the shape of the subset that is used in the analysis. Currently, a circle or square subregion_type 

can be used. r represents the radius of the subset. num_threads specifies the number of threads used in 

the analysis. DIC_config specifies three preset parameters (based on the correlation coefficient) which 

are used as criterion for filtering out  data and for how the reference image update scheme works in the 

case that large deformation is anticipated. These parameters can also be entered manually using a 

different DIC_analysis constructor; this is discussed in more detail in the next paragraph. Lastly, debug 

specifies whether debugging tools are enabled (debugging will show images of the processing updating, 

like a waitbar). 

Specifying DIC_analysis_config set three parameters: cutoff_corrcoef, update_corrcoef, and 

prctile_corrcoef. I’ve tried to encapsulate all the correlation coefficient based heuristic parameters 

used in DIC_analysis by specifying this input, and provided some preset values for these parameters to 

help perform analyses for typical data sets. Any data points with a correlation coefficient over 

cutoff_corrcoef will be removed from the data plot. update_corrcoef and prctile_corrcoef specify 

when the reference image is updated. After the data plot is analyzed, prctile_corrcoef is used as in 

input to the prctile function on the corresponding correlation coefficient plot to select a specified value 

(i.e if prctile_corrcoef is 1.0, it will select the max value; If prctile_corrcoef is 0.5, it will select the 

median value, etc). If this specified value is over cutoff_corrcoef, it will trigger an update. The preset 

DIC_analysis_configs are displayed in the table below: 

DIC_analysis_config::NO_UPDATE cutoff_corrcoef = 2.0; 

update_corrcoef = 4.0;   

prctile_corrcoef = 1.0; 

Used when you specifically do not 
want the reference image to 
update. This is used for datasets 
where the strain is known to be 
low, and is the preferred mode for 
the “plate hole” sample from 
SEM’s DIC challenge 

DIC_analysis_config::KEEP_MOST_POINTS cutoff_corrcoef = 2.0; 

update_corrcoef = 0.5; 

prctile_corrcoef = 1.0; 

Used for data where high 
deformation is expected, but the 
deformation is not discontinuous 
(i.e. no cracks form), and thus this 
mode attempts to keep all the data 
points and update as frequently as 
needed to prevent badly analyzed 
points 

DIC_analysis_config::REMOVE_BAD_POINTS cutoff_corrcoef = 0.7; 

update_corrcoef = 0.35; 

prctile_corrcoef = 0.9; 

Used for data where some cracks 
form. This mode will attempt to 
remove the badly analyzed points 
from the data plots. Since points 
near discontinuous displacements 
have very high correlation 
coefficients, this mode prevents 
updating too frequently when only 
a small number of points have a 
very high correlation coefficient. 
This is the preferred mode for 
“weld” sample for SEM’s DIC 
challenge.  
 



Program Flow - 2.1 
 

If the user wants to specify these parameters manually, then they can also call the following overload 

for the DIC_analysis_input: 

DIC_analysis_input(const std::vector<Image2D> &imgs, 

                   const ROI2D &roi, 

                   difference_type scalefactor,  

                   INTERP interp_type, 

                   SUBREGION subregion_type, 

                   difference_type r, 

                   difference_type num_threads, 

                   double cutoff_corrcoef, 

                   double update_corrcoef, 

                   double prctile_corrcoef, 

                   bool debug); 

Once the DIC_analysis_input formed, it is used as an input to DIC_analysis: 

DIC_analysis_output DIC_analysis(const DIC_analysis_input &DIC_input); 

DIC_analysis_output contains information for the displacement fields as well as their perspective 

(Lagrangian by default, but can be converted to Eulerian) and units (pixels by default). After the analysis 

is complete, the DIC_analysis_output can be modified to change its perspective and/or set units for the 

displacement fields. Changing perspective can be done by using: 

DIC_analysis_output change_perspective(const DIC_analysis_output &DIC_output,    

                                       INTERP interp_type); 

Note that changing perspective can only be done from the Langrangian to Eulerian perspective, and 

must be done before setting the units. Units can be set by using: 
 

DIC_analysis_output set_units(const DIC_analysis_output &DIC_output,  

                              const std::string &units,  

                              double units_per_pixel); 

The units_per_pixel parameter must be measured and is dependent on the user’s experimental set up. 

Lastly, note that setting the units will not change the strain values (as expected), so if only strains are 

desired then setting the units for displacements can be skipped. After the DIC_analysis_output has been 

formatted, strains can be calculated by first forming a strain_analysis_input: 

strain_analysis_input(const DIC_analysis_input &DIC_input, 

                      const DIC_analysis_output &DIC_output, 

                      SUBREGION subregion_type, 

                      difference_type r); 

subregion_type specifies the shape of the subset that is used for the least squares plane fit that will 

calculate displacement gradients and r specifies the radius used. Once formed, strain_analysis is called 

in order to calculate the strain fields: 

strain_analysis_output strain_analysis(const strain_analysis_input &strain_input); 

The strain_analysis_output will contain Green-Lagrangian strains if the strain_analysis_input contains 

a Lagrangian DIC_analysis_output; it will contain Eulerian-Almansi strains if the strain_analysis_input 

contains an Eulerian DIC_analysis_output. 



Program Flow - 2.1 
 

After the analyses are completed, the *_inputs and *_outputs can be saved as binary by calling the save 

interface functions: 

friend void save(const DIC_analysis_input&, const std::string&);  

friend void save(const DIC_analysis_output&, const std::string&);  

friend void save(const strain_analysis_input&, const std::string&);  

friend void save(const strain_analysis_output&, const std::string&); 

Once saved, the *_inputs and *_outputs can be loaded by calling the static factory load method: 

static DIC_analysis_input load(const std::string&); 

static DIC_analysis_output load(const std::string&); 

static strain_analysis_input load(const std::string&); 

static strain_analysis_output load(const std::string&); 

An example of the overall program flow (copied and modified slightly from the ncorr_test.cpp file in the 

test directory) is given below: 

// Initialize DIC and strain information ---------------// 

DIC_analysis_input DIC_input; 

DIC_analysis_output DIC_output; 

strain_analysis_input strain_input; 

strain_analysis_output strain_output; 

 

// Determine whether to calculate or load data  

bool calculate = true; 

if (!calculate) { 

    // Load inputs 

    DIC_input = DIC_analysis_input::load("save/DIC_input.bin"); 

    DIC_output = DIC_analysis_output::load("save/DIC_output.bin"); 

    strain_input = strain_analysis_input::load("save/strain_input.bin"); 

    strain_output = strain_analysis_output::load("save/strain_output.bin"); 

} else { 

    // Set images 

    std::vector<Image2D> imgs; 

    for (int i = 0; i <= 11; ++i) { 

        std::ostringstream ostr; 

        ostr << "images/ohtcfrp_" << std::setfill('0') << std::setw(2) << i << ".png"; 

        imgs.push_back(ostr.str()); 

    } 

    Image2D roi_img("images/roi.png"); 

 

    // Set DIC_input 

    DIC_input = DIC_analysis_input(imgs,      // Images 

                                   ROI2D(roi_img.get_gs() > 0.5),   // ROI 

                                   3,      // scalefactor 

                                   INTERP::QUINTIC_BSPLINE_PRECOMPUTE,  // interpolation 

                                   SUBREGION::CIRCLE,    // Subregion shape 

                                   20,      // Subregion radius 

                                   4,      // # of threads 

                                   DIC_analysis_config::NO_UPDATE,   // DIC configuration  

                                   true);      // Debugging  

 

    // Perform DIC_analysis  

    DIC_output = DIC_analysis(DIC_input); 

 

    // Convert DIC_output to Eulerian perspective 

    DIC_output = change_perspective(DIC_output, INTERP::QUINTIC_BSPLINE_PRECOMPUTE); 

 

    // Set units of DIC_output (assume 0.2 mm per pixel) 

    DIC_output = set_units(DIC_output, "mm", 0.2); 

 

    // Set strain input 

    strain_input = strain_analysis_input(DIC_input, 

                                         DIC_output, 

                                         SUBREGION::CIRCLE,   // Subregion shape 

                                         5);     // Subregion radius 



Program Flow - 2.1 
 

 

    // Perform strain_analysis 

    strain_output = strain_analysis(strain_input);  

 

    // Save outputs as binary 

    save(DIC_input, "save/DIC_input.bin"); 

    save(DIC_output, "save/DIC_output.bin"); 

    save(strain_input, "save/strain_input.bin"); 

    save(strain_output, "save/strain_output.bin"); 

} 

  



Saving Videos and Images - 2.2 
 

2.2 – Saving Videos and Images 

Once the *_inputs and *_outputs have been formed, the user can also save video and images using some 

built in interface functions.  

To save a displacement video, you call save_DIC_video: 

void save_DIC_video(const std::string &filename,  

                    const DIC_analysis_input &DIC_input,  

                    const DIC_analysis_output &DIC_output,  

                    DISP disp_type,  

                    double alpha,  

                    double fps,  

                    double min_disp = std::numeric_limits<double>::quiet_NaN(),  

                    double max_disp = std::numeric_limits<double>::quiet_NaN(),  

                    bool enable_colorbar = true,  

                    bool enable_axes = true,  

                    bool enable_scalebar = true,  

                    double num_units = -1.0, 

                    double font_size = 1.0,  

                    ROI2D::difference_type num_tick_marks = 11, 

                    int colormap = cv::COLORMAP_JET, 

                    double end_delay = 2.0,  

                    int fourcc = cv::VideoWriter::fourcc('M','J','P','G')); 

For strain, you call save_strain_video:  

void save_strain_video(const std::string &filename,  

                       const strain_analysis_input &strain_input,  

                       const strain_analysis_output &strain_output,  

                       STRAIN strain_type,  

                       double alpha,  

                       double fps,  

                       double min_strain = std::numeric_limits<double>::quiet_NaN(),  

                       double max_strain = std::numeric_limits<double>::quiet_NaN(),  

                       bool enable_colorbar = true,  

                       bool enable_axes = true,  

                       bool enable_scalebar = true,  

                       double num_units = -1.0, 

                       double font_size = 1.0,  

                       ROI2D::difference_type num_tick_marks = 11, 

                       int colormap = cv::COLORMAP_JET, 

                       double end_delay = 2.0,  

                       int fourcc = cv::VideoWriter::fourcc('M','J','P','G')); 

Saving an image requires directly obtaining the Data2D of interest and calling save_ncorr_data_over_img: 

void save_ncorr_data_over_img(const std::string &filename,  

                              const Image2D &img,  

                              const Data2D &data,  

                              double alpha,  

                              double min_data,  

                              double max_data,  

                              bool enable_colorbar,  

                              bool enable_axes,  

                              bool enable_scalebar,  

                              const std::string &units,  

                              double units_per_pixel,  

                              double num_units,  

                              double font_size, 

                              ROI2D::difference_type num_tick_marks, 

                              int colormap); 



Saving Videos and Images - 2.2 
 

An example of how to save videos and images (copied and modified slightly from the ncorr_test.cpp file 

in the test directory) is given below: 

// Save videos – use default values 

save_DIC_video("video/test_v_eulerian.avi",  

               DIC_input,  

               DIC_output,  

               DISP::V, 

               0.5,  // Alpha   

               15);  // FPS 

 

save_DIC_video("video/test_u_eulerian.avi",  

               DIC_input,  

               DIC_output,  

               DISP::U,  

               0.5,  // Alpha 

               15);  // FPS 

 

save_strain_video("video/test_eyy_eulerian.avi",  

                  strain_input,  

                  strain_output,  

                  STRAIN::EYY,  

                  0.5,  // Alpha 

                  15);  // FPS 

 

save_strain_video("video/test_exy_eulerian.avi",  

                  strain_input,  

                  strain_output,  

                  STRAIN::EXY,  

                  0.5,  // Alpha 

                  15);  // FPS 

         

save_strain_video("video/test_exx_eulerian.avi",  

                  strain_input,  

                  strain_output,  

                  STRAIN::EXX,  

                  0.5,  // Alpha 

                  15);  // FPS 

 

// Save images – must specify all parameters 

save_ncorr_data_over_img("images/test_eyy_last_eulerian.jpg",  

                         strain_input.DIC_input.imgs.back(),  

                         strain_output.strains.back().get_eyy(),  

                         0.5,  

                         0.0,  

                         0.015,  

                         true,  

                         true,  

                         true,  

                         strain_input.DIC_output.units,  

                         strain_input.DIC_output.units_per_pixel,  

                         50,  

                         1.0,  

                         11,  

                         cv::COLORMAP_JET);  

 

save_ncorr_data_over_img("images/test_exy_last_eulerian.jpg",  

                         strain_input.DIC_input.imgs.back(),  

                         strain_output.strains.back().get_exy(),  

                         0.5,  

                         -0.0075,  

                         0.0075,  

                         true,  

                         true,  



Saving Videos and Images - 2.2 
 

                         true,  

                         strain_input.DIC_output.units,  

                         strain_input.DIC_output.units_per_pixel,  

                         50,  

                         1.0,  

                         11,  

                         cv::COLORMAP_JET);  

 

save_ncorr_data_over_img("images/test_exx_last_eulerian.jpg",  

                         strain_input.DIC_input.imgs.back(),  

                         strain_output.strains.back().get_exx(),  

                         0.5,  

                         -0.015,  

                         0.0,  

                         true,  

                         true,  

                         true,  

                         strain_input.DIC_output.units,  

                         strain_input.DIC_output.units_per_pixel,  

                         50,  

                         1.0,  

                         11,  

                         cv::COLORMAP_JET); 



Accessing Data Directly - 2.3 
 

2.3 – Accessing Data Directly 

In order to access the data directly, you have to get the Data2D you’d like to access (using either the 

.disps field of the DIC_analysis_output structure, or the .strains field of the strain_analysis_output 

structure). These contain the Disp2D and Strain2D classes, respectively. Disp2D contains two Data2D’s 

paired together which can be retrieved by calling the get_v() and get_u() methods. Strain2D contains 

three Data2D’s paired together which can be retrieved by calling the get_eyy(), get_exy(), and get_exx() 

methods. 

2D data in Ncorr is stored as a 2D array (in a class called Array2D<double>) with a corresponding 2D 

region of interest (in a class called ROI2D). These two classes are paired together in a class called Data2D. 

In order to retrieve the Array2D<double>, you call the get_array() method, and in order to retrieve the 

ROI2D, you call the get_roi() method. So if you want to cycle over the Data2D to access data values 

directly and perform additional analyses, the easiest way is to loop over the entire 2D array and only 

access data if it is in the region of interest. 

The above description can be a little convoluted at first, so the best way to describe how to access the 

data directory is to just provide an example which is given below: 

// Get the displacement field you want to access 

Disp2D disp = DIC_output.disps.back();  

 

// Get the corresponding v and u Array2Ds 

const Array2D<double> &v_array = disp.get_v().get_array();  

const Array2D<double> &u_array = disp.get_u().get_array();  

 

// Get the corresponding ROI2D 

ROI2D disp_roi = disp.get_roi(); 

 

// Cycle over Disp2D and print out values  

for (int p2 = 0; p2 < disp.data_width(); ++p2) {  

    for (int p1 = 0; p1 < disp.data_height(); ++p1) {  

        if (disp_roi(p1,p2)) {  

            std::cout << "v(" << p1 << "," << p2 << ") = " << v_array(p1,p2) << std::endl;  

            std::cout << "u(" << p1 << "," << p2 << ") = " << u_array(p1,p2) << std::endl;  

        }  

    }  

}  

 

// Get the strain field you want to access 

Strain2D strain = strain_output.strains.back();  

 

// Get the corresponding eyy, exy, and exx Array2Ds 

const Array2D<double> &eyy_array = strain.get_eyy().get_array();  

const Array2D<double> &exy_array = strain.get_exy().get_array();  

const Array2D<double> &exx_array = strain.get_exx().get_array(); 

 

// Get the corresponding ROI2D 

ROI2D strain_roi = strain.get_roi();  

 

// Cycle over Strain2D and print out values  

for (int p2 = 0; p2 < strain.data_width(); ++p2) {  

    for (int p1 = 0; p1 < strain.data_height(); ++p1) {  

        if (strain_roi(p1,p2)) {  

            std::cout << "eyy(" << p1 << "," << p2 << ") = " << eyy_array(p1,p2) << std::endl;  

            std::cout << "exy(" << p1 << "," << p2 << ") = " << exy_array(p1,p2) << std::endl;  

            std::cout << "exx(" << p1 << "," << p2 << ") = " << exx_array(p1,p2) << std::endl;  

        }  



Accessing Data Directly - 2.3 
 

    }  

} 

 


